
1

Castor 1.1 (beta)
Reference Manual

Roshan Naik

(roshan@mpprogramming.com)

Last updated: June 24
th

, 2010

mailto:roshan@mpprogramming.com

2

Table of Contents

1. INTRODUCTION... 5

2. COMMON TERMS .. 6

3. CORE FACILITIES ... 7

3.1 THE LOGIC REFERENCE ... 7
Introduction .. 7
Class Definition .. 8
Construction, Copying and Destruction .. 9
Assignment semantics ...10
Assignment ..11
Checked Access ...11
Unchecked Access ...12
Other Methods ...12
Non member functions ..12
Examples ...12

3.2 TYPE RELATION ...13
Introduction ...13
Class Definition ...14
Construction ..14
Other Methods ...14
Examples ...15

3.3 UNIFICATION SUPPORT ..15
Introduction ...15
eq relation ..16
eq_f relation ..18
eq_mem relation ..20
eq_mf relation ...21
eq_seq relation ..23

3.4 BACKTRACKING SUPPORT ..24
Introduction ...24
Conjunction: Operator &&...26
Inclusive Disjunction: Operator || ..27
Exclusive Disjunction: Operator ^ ...28

3.5 RECURSION ..29
recurse relation ...29
recurse_mf relation ...30

3.6 DYNAMIC RELATIONS ..32
Introduction ...32
Conjunctions relation ...32
Disjunctions relation ...33
ExDisjunctions relation ..34

4. INLINE LOGIC REFERENCE EXPRESSIONS (ILE) ..36

4.1 CLOSURE SEMANTICS ..36
4.2 OPERATOR OVERLOADS FOR CREATING ILES:..37
4.3 NAMED ILES ..38

at ..38
call ...39
create ...41
Create::with [deprecated, use create()]...42
get ..43
mcall ..44
id ..46

3

4.4 RETURN TYPES FOR ILE OPERATORS..47

5 HIGHER-ORDER RELATIONS ...48

zip relation ...48

6 UTILS ...49

6.1 INPUT/OUTPUT RELATIONS ..49
read relation ..49
readFrom relation ...49
write relation ...50
writeTo relation ...51
write_f relation ..52
writeTo_f relation ..54
write_mem relation ...55
writeTo_mem relation ...56
write_mf relation ...56
writeTo_mf relation...58
writeAll relation ..59
writeAllTo relation ..61

6.2 SEQUENCES AND CONTAINERS ...63
empty relation ..63
head relation ..63
head_n relation ...64
head_tail relation ..64
head_n_tail relation ..65
insert relation ..66
insert_seq relation ...67
merge relation ...68
not_empty relation...68
sequence relation...69
size relation [deprecated. Use size_of()] ...71
tail relation ..72
tail_n relation ..72

6.3 AGGREGATES ...74
average TLR ..74
average_of relation ..74
count TLR..75
max TLR ..76
max_of relation ...76
min TLR ..77
min_of relation ..78
reduce TLR ..78
reduce_of relation ...79
sum TLR ..80
sum_of relation ...80
size_of relation ...81

6.4 ITERATION ...81
begin relation ..81
dereference relation ..82
end relation ..83
item relation ..83
item_map relation ...85
item_set relation ..86
next relation ..87
prev relation ..88
ritem relation ...89

4

6.5 PREDICATES ...91
Boolean relation ..91
False relation ..91
True relation ..92
predicate relation...92
predicate_mf relation ..93
predicate_mem relation ...95

6.6 COLLECTION ..96
permutation & permutation_cmp relations ...96
shuffle relation ...97

6.7 OTHER ...98
dec relation ..98
defined relation ...99
inc relation ..100
defined relation ...101
eval relation ...101
eval_mf relation...103
pause relation ..106
pause_f relation ...107
range relation ..108
range_dec relation...109
repeat relation ...110
unique relation ..111
unique_f relation ...111
unique_mf relation ..112
unique_mem relation ..113

7 TAKE LEFT RELATIONS (TLRS) ..115

7.1 INTRODUCTION ..115
7.2 CORE SUPPORT ..116

relation_tlr class ..116
>>= operator (TakeLeft operator) ..117

7.3 TLRS ...117
group_by TLR ...117
order TLR ..121
order_mem TLR ..122
order_mf TLR ..123
reverse TLR ...124

8 COROUTINE SUPPORT ...125

Coroutine class ..125
co_begin macro ...128
co_end macro ..128
co_return macro ..129
co_yield macro ..129

9 HELPER CLASSES, FUNCTIONS AND MACROS ...130

effective_value function ..130
effective_type class (meta function) ..130
getValueCont function ..131
OneSolutionRelation class [deprecated. Use Coroutine] ...132

10 CUTS ...135

10.1 INTRODUCTION..135
cutexpr relation ...136
cut class ...137

5

1. Introduction

Castor is a pure C++ library that provides native support for the Logic paradigm (LP).

Besides supporting LP, one of its key design goals is to allow easy mixing of LP with the

other paradigms available in C++. Castor does not embed an interpreter or other logic

programming engine to enable support for the logic paradigm. Instead it provides a few

simple primitives which when put together enable LP. A discussion of the

implementation techniques used in Castor to enable the Logic paradigm can found in the

paper “Blending the Logic Programming Paradigm into C++”, available from

http://www.mpprogramming.com.

This document serves only as a reference manual for Castor. For a tutorial on the Logic

Paradigm and to get a better understanding on how to use Castor please refer to the paper

“Introduction to Logic Programming in C++”, also available from

http://www.mpprogramming.com.

Castor is a pure header library and does not require your applications to link with any

additional static or shared libraries other than the standard C++ library. It does not require

any language extensions or special preprocessing to enable LP. All facilities are part of

the castor namespace. Including the header file castor.h, makes this namespace and all

castor facilities available for use. The following is a trivial hello world program using

Castor:

#include "castor.h"

using namespace castor;

int main() {

 write(“Hello World”)();

 return 0;

}

http://www.mppprogramming.com/
http://www.mppprogramming.com/

6

2. Common Terms

Logic reference: Variable of type lref<T>.

Plain old type (POT): All types other than lref<T>.

Effective type: Effective type of a logic reference lref<T1> is T1. Effective type of any

other type X is X itself.

Effective value: If t1 is a logic reference then its effective value is obtained by the

expression *t1. Effective value of any other object t2 is t2 itself. The effective value of

a logic reference is also known as the referenced object.

Relation: Typically refers to a function or member function having return type relation

(or a type convertible to relation). Sometimes it may also refer to objects of type

relation (or a type convertible to relation). The distinction, if needed, is usually

inferred from the context in which the term is used.

7

3. Core Facilities

3.1 The Logic reference

Introduction

Template type lref, abbreviation for logic reference, provides a facility for passing

values in/out of relations in the form of arguments. It is essentially a reference counted

smart pointer designed to realize logic and functional programming techniques. It is not

intended to substitute general purpose smart pointers (such as std::auto_ptr or

boost::shared_ptr) which are primarily designed with the intent of simplifying

memory management. The object referenced by a logic reference is called the referenced

object.

A logic reference always refers to a copy of the value assigned to it. This copy is kept on

the heap and can be accessed by dereferencing the lref. Initializing an lref<T> with

another lref<T> (i.e. copy construction), causes both logic references to be bound

together. Bound lrefs refer to the same object. Thus any change to the referenced object

is observed by all lrefs bound to it.

Lrefs can only be bound by initialization (i.e. copy construction) and not by assignment.

A binding between lrefs cannot be broken. The referenced object is deallocated by the

destructor of the last lref referencing it. An lref that is default constructed does not refer

to any object unless a value is assigned to it. Lrefs that do not reference anything are said

to be undefined or uninitialized. An initialized lref may be uninitialized by invoking the

reset method. Resetting an lref will implicitly cause all lrefs bound with it to also be

undefined. Resetting does not deallocate the referenced object.

Figure 1 below demonstrates the internal structure for the following logic references:

lret<int> lref1 = 5;

lret<int> lref2 = lref1;

lret<int> lref3;

Figure 1. Internal structure of Logic References

Here lref1 and lref2 are bound together. They are also defined, as their shared pointer

actually refers to an object. Since lref3’s shared pointer does not refer to any object,

lref3 is undefined.

lref1

lref2

lref3

 (useCount=2)

(defined=true)

5

 (useCount=1)

(defined=false)

referenced obj

shared pointer

shared pointer

8

As noted above, whenever a value is assigned to a logic reference it maintains of copy the

assigned value. The lifetime of this object is then managed by the logic reference. There

can be situations when we may want to have an lref pointing to a particular object (and

not its copy). This enables us grab objects that emanate from anywhere in the system and

treat them relationally using an lref. Sometimes operating on a copy may not be practical,

too expensive or even plain wrong.

Starting with Castor 1.1, pointers to objects can also be used to initialize an lref.. When

using pointers we must specify whether the lref should manage the lifetime of the object

referenced by the pointer. For example:

//lifetime of "Roshan" will be managed

lref<string> s(new string("Roshan"), true);

//lifetime of name will not be managed

string name="Naik";

lref<string> s2(&name, false);

Assignment with pointers is performed using method set_ptr:

string str="Castor";

s.set_ptr(&str, false); // deallocates "Roshan". Will not manage

lifetime of str

Class Definition

// requires: T should support copy construction and copy assignment

template <typename T>

class lref {

public:

 typedef T result_type;

 // Construct/Copy/Destroy

 lref();

 lref(const T& value);

 template<typename T2> // requires: T provides T::T(const T2&)

 lref(const T2& value);

 lref(const lref<T>& rhs);

private:

 template<typename T2>

 lref(const lref<T2>& rhs);

public:

 lref(T* ptr, bool manage);

 ~lref();

 // Assignment

 lref& operator =(const T& newValue);

9

 template<typename T2>

 lref& operator=(const T2& newValue);

 lref& operator=(const lref& rhs);

 template<typename T2>

 lref& operator=(const lref<T2>& rhs);

 template<typename T2>

 void set_ptr(T2* ptr, bool manage);

 // Checked access

 T& operator *();

 const T& operator *();

 ..unspecified.. operator ->();

 const ..unspecified.. & operator ->() const ;

 // Unchecked access

 T& get();

 const T& get() const;

 // Other

 void reset(); // nothrow

 bool defined() const; // nothrow

 unsigned int use_count() const; // nothrow

 void swap(lref<T>& other); // nothrow

 bool bound(const lref& rhs) const; // no throw

}; // class lref

// Disable template instantiation of lref<T&> and lref<void>

template<> class lref<void>;

template<typename T> class lref<T&>;

// Non member swap(). Calls l.swap(r)

template<typename T>

void swap(lref<T>& l, lref<T>& r);

Construction, Copying and Destruction

 lref()

Constructs a logic reference that does not refer to any object. An lref that does not refer to

any object is said to be undefined or uninitialized. On completion, reference count is set

to 1.

 lref(const T& value)

Constructs a logic reference that refers to a copy of value on the heap. The referenced

object is instantiated using the expression new T(value). Lifetime of this referenced

object will be managed by the lref. On completion reference count is set to 1.

 template<typename T2> lref(const T2& value)

Constructs an lref<T>. The referenced object is instantiated using the expression:

10

- new T2(value), if T2 is publicly derived from T. OR

- new T(value), if T is copy constructible from T2 (and not derived from T).

If T2 is not derived from T, a converting constructor T::T(const T2&) must be

available. Note that this overload is invoked only when newValue is not exactly of type

T. Lifetime of the referenced object will be managed by the lref. On completion,

reference count is set to 1.

 lref(const lref<T>& rhs)

Constructs a logic reference that refers to the same object that is referenced by rhs. On

completion, both lrefs will also share the same reference count which will be incremented

by 1. The two logic references are now bound together. Note: In the current

implementation, an lref<const T> cannot bind to a lref<T>. This a know limitation

which we hope to address in the future.

 template<typename T2> lref(const lref<T2>& rhs)

This is a private constructor. It disables construction of lref<T> from lref<T2>.

 lref(T* ptr, bool manage)

Constructs a logic reference that refers to the same object as *ptr. The lifetime of the

object referenced by ptr will be managed if manage is true. On completion reference

count is set to 1.

 ~lref();

On completion, reference count is decremented by 1. If the reference count has reached 0,

and the referenced object (if any) is being managed, the referenced object will be deleted.

Assignment semantics

From the standpoint of implementing assignment to an lref, it is possible to update the

referenced object with the new object in one of two ways:

a. A simple assignment of newValue to the currently referenced object, OR

b. First deallocate the currently referenced object (if any), then allocate a new object

initialized with newValue to replace the old object.

The first strategy is typically more efficient since it does not involve allocation and de-

allocation of the referenced object. However it is not always feasible to use it. For

optimization reasons, no guarantees are provided as to which of the above may actually

occur. The strategy used typically depends on the types of the currently referenced object

and newValue. For instance, the current implementation uses the following strategy to

minimize calls to new and delete:

a. Use simple assignment if lref<T> is defined and the referenced object and

newValue are both exactly of type T.

b. Otherwise, the referenced object, if any, is deallocated and replaced with a new

object initialized with newValue. If newValue is of a type T2 such that T2 is

derived from T, the new object is allocated using the expression new

T2(newValue). If newValue is of type T2, such that T is copy constructible from

T2 (and not derived from T) then the new object is allocated using the expression

new T(newValue).

11

Assignment

 lref& operator=(const T& newValue);

Assigns newValue to the logic reference. Note that this overload is invoked only when

newValue is exactly of type T (and not for types derived from or copy constructible from

T).

 template<typename T2>

 lref& operator=(const T2& newValue);

Assigns newValue to the logic reference. Note that this overload is invoked only when T2

is publicly derived from T.

 lref& operator=(const lref<T>& rhs);

Assigns rhs’s referenced object to this logic reference. This operation does not cause the

two logic references to be bound together. If rhs is not initialized, this lref will also be

reset. Note that this overload is invoked only when the type of rhs is the same as this lref.

 template<typename T2>

 lref& operator=(const lref<T2>& rhs);

Assigns rhs’s referenced object to this logic reference. This operation does not cause the

two logic references to be bound together. If rhs is not initialized, this lref will also be

reset. Note that this overload is invoked only if T2 is not the same T1 and T2 is assignable

to T.

 template<typename T2>

 void set_ptr(T2* ptr, bool manage)

Causes the lref to refer to the object pointed to by ptr. Unlike other forms of assignment,

this operation does not make a copy of the object pointed to be ptr. If prior to this

method, the lref references an object whose lifetime is managed, that object will be

deleted. The lifetime of the new object referenced by ptr will be managed if manage is

true. Note that T2 should either be same as T, or T2* should be assignable to T*.

Checked Access

 T& operator *();

Returns the referenced object. If lref is undefined, this operation throws an exception of

type InvalidDeref.

 const T& operator *();

Returns the referenced object. Throws InvalidDeref if the lref is undefined.

 ..unspecifiedType.. & operator ->();

This method is used to access the members of the referenced object. Exact return type is

deliberately unspecified. Throws InvalidDeref if the lref is undefined.

 const .. & operator ->() const ;

This method is used to access the members of the referenced object. Exact return type is

deliberately unspecified. Throws an exception of type InvalidDeref if the lref is

undefined.

12

Unchecked Access

 T& get();

Returns the referenced object. If the lref is not initialized, its behavior is undefined. This

method is the unchecked equivalent of operator *.

 const T& get() const;

Returns the referenced object. If the lref is not initialized, its behavior is undefined. This

method is the unchecked equivalent of operator *.

Other Methods

 void reset(); // nothrow

This method causes the lref to be undefined. The referenced object (if any) will not be

deallocated by this operation.

 bool defined() const; // nothrow

Checks if the lref is currently defined.

 unsigned int use_count() const; // nothrow

Returns the total number of logic references that are bound with this lref. This value is

always greater than or equal to 1.

 void swap(lref<T>& other); // nothrow

Swaps the pointer to the referenced object stored in the shared pointers of the two lrefs.

Use count (i.e. reference count) is not swapped.

bool bound(const lref& rhs)

Checks if the lref and rhs refer to the same object in memory.

Non member functions

template<typename T>

void swap(lref<T>& l, lref<T>& r);

Swaps the referenced objects of l and r. Semantics are same as l.swap(r).

Examples

// Accessing referenced object

string s="logic";

lref<string> ls1 = s, ls2 = "paradigm";

cout << *ls1 << " "; // checked access

cout << ls2.get() << "\n"; // unchecked access

// Behavior of bound lrefs

lref<string> ls3 (ls1); // ls3 and ls1 are now bound

ls1 = "multi";

cout << *ls3; // prints "multi"

cout << std::boolapha << ls1.defined(); // prints "true"

ls3.reset();

13

cout << std::boolapha << ls1.defined(); // prints "false"

ls3 = ls2; // this does not bind the two lrefs

ls2.reset();

cout << std::boolapha << ls1.defined(); // prints "true"

// Swapping lrefs

lref<int> li1 = 2;

lref<int> li2(li1); // bind

lref<int> li3;

swap(li2,li3);

cout << *li3 << "\n"; // prints "2"

// foll. prints: "false 2"

cout << boolalpha << li2.defined() << " " << li2.use_count() << "\n";

// foll. prints: "true 1"

cout << boolalpha << li3.defined() << " " << li3.use_count() << "\n";

3.2 Type relation

Introduction

The concept of a relation is to the logic paradigm what a function is to the imperative

paradigm. Relations are the basic computational building blocks when programming in

logic. Since C++ is based on the imperative paradigm, it is desirable to be able to

describe relations as functions. Due to the flexibility of C++, this is possible without

extending the language. This allows relations to be given similar treatment as regular

functions, facilitating the logic paradigm to blend smoothly into C++. Regular functions

can be composed from other functions and relations. Similarly relations can be composed

from other relations and functions
1
. The type relation enables this kind of integration

with bare minimal syntactic overhead.

The type relation is typically used to specify the return type for functions and methods

that represent the concept of a relation. Functions and methods with return type relation

are themselves referred to as relations. In this manual we refer to such a function or

method as a “relation” and to the type as “relation”. (Note the difference in fonts used).

The term “relation” is commonly (i.e. outside of this reference manual) used to refer to

the former. The following are a few examples of relations defined using the type

relation:

relation twiceOf(lref<int> x, lref<int> x2) { // non member relation

 …

}

struct Arithmetic {

 relation twiceOf(lref<int> x, lref<int> x2) { // member relation

 …

 }

};

1
 Composing relations from regular functions requires some care, due to the lazy evaluation semantics of

relations, which is in contrast to eager evaluation semantics of regular functions.

14

From an operational semantics point of view, relation is used to hold function objects

with return type bool and no arguments. A relation internally stores a copy of such a

function object for delayed invocation. Application of the function call operator, without

any arguments, on a relation object triggers the invocation of the stored function

object. An object of type relation cannot be default initialized (i.e. without arguments).

This ensures that a relation is always initialized with some function object and thus it is

always safe to apply the function call operator on a relation. A different function object

can be assigned to an instance of relation after initialization.

Class Definition

class relation {

public:

 typedef bool result_type;

 // Requires : F supports method... bool F::operator()(void)

 template<class F>

 relation(F f);

 relation(const relation& rhs);

 relation& operator=(const relation& rhs);

 bool operator()(void) const;

};

Construction

 template<class F>

 relation(F f);

Constructs a relation from function object f. F is expected to support bool

F::operator()(void). Note, F must be a non-static member function type.

 relation(const relation& rhs);

Copy constructs relation from another. This involves storing a copy of the function

object stored in rhs.

Other Methods

 relation& operator=(const relation& rhs);

Copies rhs into this relation.

 bool operator()(void) const;

Triggers evaluation of the internally stored function object.

15

Examples

struct PrintHello {

 bool operator() (void) {

 cout << "Hello ";

 return true;

 }

};

struct PrintWorld {

 bool operator() (void) {

 cout << "World";

 return true;

 }

};

relation r = PrintHello();

r(); // invokes PrintHello::operator()

r = PrintHello() && PrintWorld();

r(); // invokes PrintHello::operator() then PrintWorld::operator()

relation r2; // Compiler Error! relation canot be default initialized.

3.3 Unification Support

Introduction

Logic paradigm uses a general purpose problem solving technique for evaluating

relations to perform computation. This technique involves two fundamental operations:

unification and backtracking. In a nutshell, these two operations can be described as

follows:

 Backtracking determines which path of evaluation should be pursued next from a

set of (possibly empty) available paths.

 Unification either produces results or tests if a desired result was produced.

This section only covers unification and the facilities provided in Castor to support

unification. Backtracking is covered in the next section. The unification operation is

simply an attempt to unify values of two items. The items could be logic references or

plain old types (i.e. types other than lref). To unify two objects means to make their

values equal. The definition of equality is governed by operator ==. When attempting

to unify two objects, it may be the case that the two objects compare equally. In such a

case unification succeeds trivially. Assignment of one object to another is considered

only if one of the two objects is an uninitialized logic reference. The uninitialized logic

reference is assigned the value of the other object thus making the two objects equal. In

all other cases unification fails. Relation eq provides the fundamental support for

unification. The semantics of unification relation eq is as follows:

- If both arguments are initialized, their values are compared for equality and the

result of comparison is returned.

- If the only one argument is initialized, the uninitialized argument will be is

assigned the value of initialized one in order to make them equal.

- If both arguments are uninitialized, an exception is thrown.

16

Castor provides a few unification relations. The choice of which relation to use primarily

depends upon the nature of items being unified. The most basic unification support is

provided by relation eq. Any two objects that can be compared and assigned to each other

can be unified using eq. Unification of containers such a std::list with a sequence of

values bounded by an iterator pair is supported by eq_seq. A more sophisticated facility

for unification of sequences with values, iterator pairs or other sequences is provided by

relation sequence. Relations eq_f and eq_mf provide support for unification of objects

with values returned from functions and member functions respectively.

eq relation

//1. Unify logic references

template<typename L, typename R>

UnifyLR<L,R> eq(lref<L>& l, lref<R>& r)

template<typename L, typename R, typename Cmp>

UnifyLR<L,R,Cmp> eq(lref<L>& l, lref<R>& r, Cmp cmp)

//--- Treat char* as strings instead of pointer to a char ---

//2. Unify logic reference with char*. Used when T is an abstraction

for char* (like std::string)

template<typename T>

UnifyL<T,T> eq(const lref<T>& l, const char* r)

template<typename T, typename Cmp>

UnifyL<T,T,Cmp> eq(const lref<T>& l, const char* r, Cmp cmp)

template<typename T>

UnifyL<T,T> eq(const char* l, const lref<T>& r)

template<typename T, typename Cmp>

UnifyL<T,T,Cmp> eq(const char* l, const lref<T>& r, Cmp cmp)

//3. Unify two char* strings

Boolean eq(const char* l, const char* r)

template<typename Cmp>

Boolean eq(const char* l, const char* r, Cmp cmp)

//--- Remaining overloads provided for optimization ---

//4. Neither argument is a logic reference

template<typename L, typename R>

Boolean eq(const L& l, const R& r)

template<typename L, typename R, typename Cmp>

Boolean eq(const L& l, const R& r, Cmp cmp)

//5. one argument is a logic reference but the other is not

template<typename L, typename R>

17

UnifyL<L,R> eq(const lref<L>& l, const R& r)

template<typename L, typename R, typename Cmp>

UnifyL<L,R,Cmp> eq(const lref<L>& l, const R& r, Cmp cmp)

template<typename L, typename R>

UnifyL<R,L> eq(const L& l, const lref<R>& r)

template<typename L, typename R, typename Cmp>

UnifyL<R,L,Cmp> eq(const L& l, const lref<R>& r, Cmp cmp)

Declarative reading: l is equal to r.

Template Parameters:

L,R,T : Should satisfy the standard CopyConstructible [$20.1.3], Assignable [$23.1.4]

and EqualityComparable [$20.1.1] requirements.

Cmp : A function or function object type which accepts two arguments of type T. Used to

customize the comparison operation performed during unification.

Parameters:

l : [in/out] Item to be unified with r.

r : [in/out] Item to be unified with l.

cmp : [in] Binary predicate used to compare two objects of type T.

If both l and r are logic references, at least one of them must be initialized at the time of

evaluation.

Exceptions:

InvalidDeref : If both l and r are not initialized at the time of evaluation.

Notes:

Relation eq will either check or make the two arguments equal. If both arguments are

initialized to a value, then eq will compare them for equality and succeeds if the two are

equal and fails (i.e. returns false) otherwise. If one of the arguments is not initialized,

then the value of the other argument is assigned to it, thus making the two arguments

equal. If both arguments are not initialized at the time of evaluation, an exception is

thrown.

This operation of testing/assigning depending upon the whether or not the two arguments

are initialized, is referred to as unification. Unification, in a sense, is the relational

equivalent of operator== (which only performs a test for equality) and operator=

(which only performs assignment). In short, relation eq unifies its arguments.

Examples:

 // 1) with simple values and value types(i.e. not logic references)

 eq(2,2)(); // compare 2 with 2 .. returns true

 eq(1,2)(); // compare 1 with 2 .. returns false

18

 int i=2;

 eq(i,2)(); // compare value of i with 2 .. returns true

 // 2) with initialized logic references

 lref<int> li=2;

 eq(i,li)(); // compare i with li .. returns true

 // 3) with uninitialized logic references

 lref<int> lj; // note: lj is not initialized with a value

 eq(lj,i)(); // lj is assigned value of i, thus initializing lj

 cout<< *lj; // prints "2"

 lref<int> lk; // at this point lk is not initialized but lj is

 eq(lj,lk)(); // lk is assigned value of lj, thus initializing lk

 lj.reset(); // uninitialize lj
 lj.reset(); // uninitialize lk
 eq(lj,lk)(); // throws InvalidDeref

 // 4) unifying containers

 lref<vector<int> > lvi;

 vector<int> vi = /* 1,2,3,4 */;

 eq(lvi,vi)(); // lvi is assigned a vector equivalent to vi

Also refer to:
sequence, eq_seq, eq_f, eq_mf

eq_f relation

// overloads for functions objects

template<typename T, typename Func>

Eq_f_r<T, Func>

eq_f(const lref<T> l, Func f)

template<typename T, typename Func1, typename A1>

Eq_f_r1<T, Func1, A1>

eq_f(lref<T> l, Func1 f, const A1& a1_)

template<typename T, typename Func2, typename A1, typename A2>

Eq_f_r2<T, Func2, A1, A2>

eq_f(lref<T> l, Func2 f, const A1& a1_, const A2& a2_)

.. additional overloads supporting upto 6 arguments to f

// overloads for function pointers

template<typename T, typename R>

Eq_f_r<T,R(*)(void)>

eq_f(lref<T> l, R(* f)(void))

template<typename T, typename R, typename P1, typename A1>

Eq_f_r1<T,R(*)(P1),A1>

eq_f(lref<T> l, R(* f)(P1), const A1& a1_)

19

template<typename T, typename R, typename P1, typename P2, typename A1

 , typename A2>

Eq_f_r2<T,R(*)(P1,P2),A1,A2>

eq_f(lref<T> l, R(* f)(P1,P2), const A1& a1_, const A2& a2_)

.. additional overloads supporting upto 6 arguments to f

Declarative reading: l is equal to the value returned by invoking f(a1_,..,aN_).

Template Parameters:

T : Any type which satisfies requirements of logic reference.

FuncN : A function object type with arity N.

R: Return type of the function pointer.

Pn: Type of the N
th

 parameter of function pointer. Can be an lref or POT. AN should be

either same as or convertible to the corresponding Pn.

An : Type of argument passed at position n to the FuncN type. Can be a POT or lref

whose effective type is convertible to the corresponding parameter type in FuncN.

Parameters:

l : [in/out] Item to be unified with result of f.

f : [in] Function pointer or function object whose result will be unified with l. Cannot be

a member function type.

aN_ : [in] Argument (POT or lref) at position N whose effective value will be passed to f.

Exceptions:

InvalidDeref : If any argument aN is an lref and is not initialized at the time of

evaluation.

Any exception thrown by f.

Notes:

Relation eq_f provides support for unification with values returned by evaluating

functions or function objects. ILEs may also be used as arguments to parameter f.

Parameter l will be compared with or assigned the result of evaluating f. All arguments

(if any) required to evaluate f should be passed to eq_f using the aN_ parameters.

Effective value of every aN_ will be passed to f.

Examples:

// 1) With regular functions

int compute(int j, int k) {

 return j/k-1;

}

lref<int> li, lj, lk;

relation r = eq(lj,6) && eq(lk,2) && eq_f(li, &compute, lj, lk);

if(r())

 cout << *li; // prints "2"

20

// 2) With function objects

struct Compute {

 int operator ()(int j, int k) {

 return j/k-1;

 }

};

lref<int> li, lj, lk;

relation r = eq(lj,6) && eq(lk,2) && eq_f(li, Compute(),lj,lk);

if(r())

 cout << *li; // prints "2"

// 3) With ILE (Inline Lref Expression)

lref<int> li, lj, lk;

relation r = eq(lj,6) && eq(lk,2) && eq_f(li, lj/lk-1);

if(r())

 cout << *li; // prints "2"

Also refer to:

eq_mf, eq, eq_seq

eq_mem relation

template<typename L, typename Obj, typename Obj2, typename MemberT>

Eq_mem_r<L, Obj, MemberT>

eq_mem(lref<L> l, lref<Obj>& obj_, MemberT Obj2::* mem)

Declarative reading: l is equal to member variable (*obj).*mem.

Template Parameters:

L : Any type which satisfies requirements of logic reference.

Obj : Any type which whose member variable is to be accessed.

Obj2 : Same as Obj or a public base class of Obj.

MemberT : Type of the data member to be accessed.

Parameters:

l : [in/out] Item to be unified with result of evaluating member function mf on obj_.

obj_ : [in] The object whose data member is to be accessed. This argument must be a

logic reference. This restriction ensures methods are invoked on the actual argument and

not on a copy of obj_.

mem : Pointer to a member variable which is to be unified with l.

Notes:

Relation eq_mem provides support for unification with member variables. Parameter l

will be compared with or assigned the result of evaluating (*obj_).*mem.

If obj_ is of type const Obj, explicit template arguments will be required. See examples

below.

21

Examples:
//1) Get a first item in a pair of strings representing a person‟s name

lref<pair<string,string> > p = pair<string,string>("Roshan","Naik");

lref<string> firstName;

eq_mem(firstName, p, &pair<string,string>::first)();

cout << *firstName; // prints "Roshan"

//2) Compute total salary of all employees

struct employee {

 string name;

 int salary;

 bool operator == (const employee& rhs) const {

 return name==rhs.name && salary==rhs.salary;

 }

};

list<employee> employees = ...;

lref<int> salary;

lref<employee> e;

relation salaries = item(e, employees.begin(), employees.end())

 && eq_mem(salary, e, &employee::salary);

int total=0;

while(salaries())

 total+=*salary;

cout << total;

//3) On const objects – requires explicit template arguments

lref<const pair<int,string> > p = ...;

eq_mem<int,const pair<int,string> >(1, p,&pair<int,string>::first);

Also refer to:

eq, eq_f, eq_mf, eq_seq

eq_mf relation

// Overloads for non-const member functions

template<typename L, typename Obj, typename Obj2, typename R >

Eq_mf_r0<L,Obj,R(Obj::*)(void)>

eq_mf(lref<L> l, lref<Obj>& obj_, R(Obj2::*mf)(void))

template<typename L, typename Obj, typename Obj2, typename R

 , typename P1, typename A1>

Eq_mf_r1<L,Obj,R(Obj::*)(P1),A1>

eq_mf(lref<L> l, lref<Obj>& obj_, R(Obj2::* mf)(P1), const A1& a1_)

template<typename L, typename Obj, typename Obj2, typename R

 , typename P1, typename P2, typename A1, typename A2>

Eq_mf_r2<L,Obj,R(Obj::*)(P1,P2),A1,A2>

eq_mf(lref<L> l, lref<Obj>& obj_, R(Obj2::* mf)(P1,P2), const A1& a1_

22

 , const A2& a2_)

.. additional overloads supporting upto 6 arguments to mf

// Overloads for const member functions

template<typename L, typename Obj, typename Obj2, typename R>

Eq_mf_r0<L,Obj,R(Obj::*)(void) const>

eq_mf(lref<L> l, lref<Obj>& obj_, R(Obj2::*mf)(void) const)

template<typename L, typename Obj, typename Obj2, typename R

 , typename P1, typename A1>

Eq_mf_r1<L,Obj,R(Obj::*)(P1) const,A1>

eq_mf(lref<L> l, lref<Obj>& obj_, R(Obj2::* mf)(P1) const

 , const A1& a1_)

template<typename L, typename Obj, typename Obj2, typename R

 , typename P1, typename P2, typename A1, typename A2>

Eq_mf_r2<L,Obj,R(Obj::*)(P1,P2) const,A1,A2>

eq_mf(lref<L> l, lref<Obj>& obj_, R(Obj2::* mf)(P1,P2) const

 , const A1& a1_, const A2& a2_)

.. additional overloads supporting upto 6 arguments to mf

Declarative reading: l is equal to the value returned by invoking member function mf

on object obj_ with arguments p1..pN.

Template Parameters:

L : Any type which satisfies requirements of logic reference.

Obj : A type whose member function is to be invoked.

Obj2 : Same as Obj or a public base class of Obj.

R : Return type of the member function.

Pn: Type of the n
th

 parameter of member function.

An : Type of the n
th

 argument to being passed. Can be a POT or lref whose effective type

is convertible to the corresponding parameter type Pn.

Parameters:

l : [in/out] Item to be unified with result of evaluating member function mf on obj_.

obj_ : [in] Object on which member function pointed to by mf will be invoked. This

argument must be a logic reference. This restriction ensures methods are invoked on the

actual argument and not on a copy of obj_.

mf : Member function pointer whose result is to be unified with l.

aN_ : [in] Argument (POT or lref) at position N whose effective value will be passed to

mf.

Notes:

Relation eq_mf provides support for unification with values returned by evaluating

member functions on objects. Parameter l will be compared with or assigned the result of

evaluating obj_->*mf(..).Note that any side effects induced by mf will not be undone

during backtracking. Hence eq_mf should be used with care, ensuring that it does not

23

interfere with the correct evaluation of other relations by modifying obj_ or other objects

that are shared with other relations. eq_mf always succeeds at most once.

If obj_ is of type const Obj, explicit template arguments will be required. See examples

below.

Examples:

struct Compute {

 int j;

 Compute(int j) : j(j)

 {}

 int apply(int k) const { // unary member function to be invoked

 return j/k-1;

 }

};

lref<int> li;

lref<Compute> comp = Compute(6);

relation r = eq_mf(li, comp, &Compute::apply, 2);

if(r())

cout << *li; // prints "2"

// On const object – explicit template arguments required

lref<const Compute> comp = Compute(6);

eq_mf<int, const Compute>(li, comp, &Compute::apply, 2);

Also refer to:

eq_f, eq_mem, eq, eval_f, eval_mf

eq_seq relation

template<typename Cont, typename Iter>

UnifySeq<Cont,Iter> eq_seq(const lref<Cont>& c, Iter begin_, Iter end_)

template<typename Cont, typename Iter, typename Cmp>

UnifySeq<Cont, Iter, Cmp> eq_seq(const lref<Cont>& c, Iter begin_, Iter

end_, Cmp cmp)

Declarative reading: Container c is equal to the sequence represented by the iterators

begin and end.

Template Parameters:

Cont : Must satisfy requirements of standard C++ containers [$23.1]. Cannot be a const

qualified type.

Iter: A type that yields Cont::value_type on dereferencing. Should satisfy the

InputIterator requirements [$24.1.1].

24

Cmp : A binary predicate with both parameters of type T such that Cont::value_type is

T or convertible to T. Used to customize the comparison operation performed during

unification.

Parameters:

c : [in/out] Item to be unified with r.

begin_ : [in] Iterator to the beginning of the sequence to be unified with c.

end_ : [in] Iterator to one past the end of the sequence to be unified with c.

cmp : [in] cmp : [in] Binary predicate used to compare two objects of type

Cont::value_type. It may be a function object or pointer to function. cmp is used to

compare an item in container c with the corresponding item in

sequence[begin_,end_)for equality. cmp cannot be a logic reference.

Exceptions:

InvalidDeref : If either begin_ or end_ is not initialized at the time of evaluation.

Notes:

Relation eq_seq provides a simple and useful facility for unifying containers with a

sequences represented by an iterator pairs. If iterators begin_ and end_ are logic

references they must be initialized at the time of evaluation. If c is initialized, then the

sequence [c.begin(), c.end()) is compared for equality with the sequence

[begin_, end_). Comparison fails if the two sequences differ in length or if the items in

the corresponding positions do not compare equally. Comparison operation can be

customized by passing a binary predicate to parameter cmp. If c is not initialized, it will

be initialized with a container consisting of the elements in [begin_,end_).

Examples:
 // 1) generate container with elements

 const int ai[] = {1,2,3};

 lref<vector<int> > vi;

 if(eq_seq(vi, ai, ai+3)())

 copy(vi->begin(), vi->end(), ostream_iterator<int>(cout, " "));

 // 2) compare container with sequence

 list<int> li = /* {1,2,3} */;

 lref<vector<int> > vi = vector<int>(3);

 (*vi)[0]=1; (*vi)[1]=2; (*vi)[2]=3;

 if(eq_seq(vi, li.begin(), li.end())())

 cout << "vi has the same elements as li";

Also refer to:
sequence, eq

3.4 Backtracking Support

Introduction

As in life, our main purpose in computation is to find the answer. There are often many

ways to get to an answer. Some problems may have one or more answers, and other

25

problems may have none. The search for an answer can possibly lead in several different

directions, not all of which are actually productive. The search must therefore be able to

step back and resume the search from an earlier point where an alternative direction was

possible. This process pursuing one path of evaluation and then stepping back to try an

alternative in search of a solution is referred to as backtracking.

Consider the relational expression eq(x,3) && eq(y,4) || eq(x,5) && eq(y,6)

which basically declares “if x is 3 then y is 4, OR if x is 5 then y is 6”. We can represent

this using the following expression tree:

Let us see how backtracking goes about answering the question “What is a suitable value

for x given that y’s value is fixed to 6?”. Goal of backtracking is to evaluate this

expression tree successfully. Evaluation begins at the top of the tree and encounters the

disjunction operator || which offers two possible choices (the left and right branches) in

order to proceed. For disjunction to succeed, it is sufficient that any one branch evaluates

successfully. Backtracking relies on depth first strategy and chooses the left branch. Here

the conjunction operator && is encountered. For the conjunction to succeed, both its

branches must evaluate successfully. The left branch is evaluated first followed by the

right branch. The left branch succeeds in unifying x with 3 (since x is not initialized) but

the right branch fails to unify y with 4 (since y is initialized to 6). This leads to the failure

of the conjunction which in turn implies failure of the entire left branch under the

disjunction operator.

Now comes the time to step back and resume exploring the right branch of the

disjunction. Stepping back involves reverting any side effects that occurred while

pursuing the left branch under disjunction. In this case x went from being uninitialized to

being initialized with 3. So X is reset to its uninitialized state. The evaluation now steps

down the right branch in a fashion same as before and attempts to unify x with 5 and y

with 6. This time around both operations succeed and consequently the conjunction also

succeeds. This in turn implies successful evaluation of the disjunction and the entire

expression tree. We now find x initialized with 5 which answers the question we started

out to with.

As can be seen from the above example, conjunction and disjunction operators are used

to build the expression tree that is traversed during backtracking. Castor provides native

||

&&

eq(x,3)

eq(y,4)

&&

eq(x,5)

eq(y,6)

Expression tree for : eq(x,3) && eq(y,4) || eq(x,5) && eq(y,6)

26

support for two varieties of disjunction: inclusive and exclusive. Typically, classic logic

programming systems such as Prolog directly support only the inclusive variety. Operator

||, which is used in the above example, provides support for inclusive disjunction.

Support for exclusive disjunction is provided by the ex-or operator ^. The following

sections deal with each of the relational operators in further detail.

Conjunction: Operator &&
And_r<relation,relation> operator && (const relation& l

 , const relation& r)

Logical conjunction is a binary relation between any two relations with a meaning similar

to “and” in English. Conjunction is denoted by operator && in Castor. It is itself a relation

which takes two other relations as arguments. In other words, it is a higher order binary

relation. A simplified definition for conjunction is: a relation that succeeds when both its

argument relations succeed. However, in logic, a relation may succeed zero, one or more

times. The definition of conjunction needs to accommodate possibly multiple successful

evaluations of its argument relations. Thus we broaden the definition of conjunction to: a

relation that succeeds each time the second relation evaluates successfully for a

successful evaluation of the first. Given this definition, conjunction can itself succeed

zero, one or more times depending upon its argument relations. For instance consider the

following simple expression:

range(x, 1, 3) && range(x, 2, 5)

Both arguments to && are range relations. The first relation indicates that x is a value in

the inclusive range 1 through 3. The second relation indicates that x is a value in the

inclusive range 2 through 5. Considered in isolation, the first relation can succeed three

times (producing values 1,2 and 3) and the second relation can succeed four times

(producing values 2,3,4 and 5). The conjunction itself can succeed only twice, i.e. when x

is 2 or 3. Any other value for x will fail either the first or the second range relation.

Operational semantics of && can be summarized as: pursue all solutions in r for each

solution in l. The following pseudo code demonstrates this.

//This is psuedo code!

relation tmp = rhs; //make copy of rhs

while(l()) {

 while(r())

 yield return true;// Not C++. „yield‟ keyword borrowed from C#

 rhs = tmp; //reset rhs

}

//no more solutions left

return false;

In terms of the imperative paradigm, the operational semantics can be visualized as one

loop nested in another as shown above. The outer loop is responsible for evaluating l and

the inner loop for evaluating r. If l succeeds, r is attempted. If r succeeds the

conjunction also succeeds and returns true. Further attempts to pursue more solutions

27

from conjunction will lead to repeated evaluations of r until it fails. Once r is exhausted,

l is evaluated once again and the whole process repeats. Finally when l is exhausted the

conjunction has no more solutions to produce and returns false. Thereafter any attempts

to pursue more solutions from this conjunction will fail immediately.

Note that once all solutions are exhausted in r, it has to be reset to its original state before

pursuing the next solution in l. This enables r to resume producing a new set of solutions

for each successful evaluation of l. Otherwise r will not be able to produce any new

solutions. In order to be able to reset r to its original state, a copy of r is made in tmp

prior to attempting any evaluation of r.

Inclusive Disjunction: Operator ||

// requires : L and R must be treatable as relations

template<typename L, typename R>

Or_r<L,R> operator || (const L& l, const R & r)

Inclusive disjunction is a binary relation between any two relations with a meaning

similar to “or” in English. It is denoted by operator || in Castor. Inclusive disjunction is

itself a relation which takes two other relations as arguments. In other words, it is a

higher order binary relation. A simplified definition for inclusive disjunction is: a relation

that succeeds when at least one of its argument relations succeeds. To accommodate the

ability of its argument relations to evaluate successfully zero or more times, we broaden

its definition to: a relation that succeeds each time there is at a successful evaluation of

one of its argument relations. Given this definition, disjunction can itself succeed zero,

one or more times depending upon its argument relations. For instance consider the

following simple expression:

range(x, 1, 3) || range(x, 2, 5)

Both arguments to || are range relations. The first relation indicates that x is a value in

the inclusive range 1 through 3. The second relation indicates that x is a value in the

inclusive range 2 through 5. Considered in isolation, the first relation can succeed three

times (producing values 1,2 and 3) and the second relation can succeed four times

(producing values 2,3,4 and 5). The combined expression itself can succeed seven times

(producing values 1,2,3,2,3,4 and 5). Relation range(x,1,3) produces the first three

values for x and range(x,2,5) produces the remaining four values. Notice how the

duplicate values are generated for x.

Operational semantics of operator || can be summarized as: pursue all solutions in l then

pursue all solutions in r. The following pseudo code demonstrates this.

//This is psuedo code!

while(l())

 yield return true; // Not C++. „yield‟ keyword borrowed from C#

while(r())

 yield return true;

return false; //no more solutions left

28

In terms of the imperative paradigm, the operational semantics can be visualized as two

main loops, one following another as shown above. The first loop is responsible for

evaluating l and the second for evaluating r. After l’s solutions have been exhausted by

the first loop, the second loop pursues solutions in r. Once r has also been exhausted,

there are no more solutions to produce and evaluation enters the third loop. Here

disjunction always fails by returning false. Thus all future attempts to pursue more

solutions from this disjunction will fail immediately.

Exclusive Disjunction: Operator ^

// requires : L and R must be treatable as relations

template<typename L, typename R>

ExOr_r<L,R> operator ^ (const L & l, const R & r)

Exclusive disjunction is a binary relation between any two relations with a meaning

similar to “either or” in English. It is denoted by operator ^ in Castor. Exclusive

disjunction is itself a relation which takes two other relations as arguments. In other

words, it is a higher order binary relation. A simplified definition for exclusive

disjunction is: a relation that succeeds when one of its argument relations succeeds. The

second argument is evaluated only if the first does not succeed. To accommodate the

ability of its argument relations to evaluate successfully zero or more times, we broaden

its definition to: a relation that succeeds each time one of its argument relations succeeds.

Disjunction can itself succeed zero, one or more times depending upon its argument

relations. For instance consider the following simple expression:

range(x, 1, 3) ^ range(x, 7, 10)

Here both arguments to ^ are range relations. The first relation indicates that x is a value

in the inclusive range 1 through 3. The second relation indicates that x is a value in the

inclusive range 7 through 10. The intent here is to state that x can have a value that is

either between 1 and 3 or between 7 and 10, and not in both ranges. If x is left undefined,

only the first range relation will produce values for x. Due to successful evaluation of

first relation, the second range relation will be ignored. However if x’s value is defined

such that it’s value in the range 7 through 10, the first relation will fail leading to the

evaluation of the second range relation.

Operational semantics of operator ^ can be summarized as: for every successful

evaluation of l make sure r does not succeed and vice versa. The following pseudo code

demonstrates this.

//This is psuedo code!

bool lhsSucceded = false;

while(lhs()) {

 lhsSucceded = true;

 yield return true; // Not C++. „yield‟ keyword is not valid C++

}

while(!lhsSucceded && rhs())

29

 yield return true;

return false;

In terms of the imperative paradigm, the operational semantics can be visualized as two

main loops, one following another as shown above. The first loop is responsible for find a

successful evaluation of lhs and the second loop for rhs. A boolean flag is used to

ensure that rhs is attempted only if lhs never succeeded. This loop continues to succeed

as long lhs or rhs succeeds.

3.5 Recursion

recurse relation

// support for nullary relations

template<typename Rel_0>

Recurse0_r<Rel_0>

recurse(Rel_0 r)

// remaining overloads support relations with up to 6 arguments

template<typename Rel_1, typename A1>

Recurse1_r<Rel_1,A1>

recurse(Rel_1 r, lref<A1>& a1)

template<typename Rel_2, typename A1, typename A2>

Recurse2_r<Rel_2,A1,A2>

recurse(Rel_2 r, lref<A1>& a1, lref<A2>& a2)

template<typename Rel_3, typename A1, typename A2, typename A3>

Recurse3_r<Rel_3,A1,A2,A3>

recurse(Rel_3 r, lref<A1>& a1, lref<A2>& a2, lref<A3>& a3)

template<typename Rel_4, typename A1, typename A2, typename A3

 , typename A4>

Recurse4_r<Rel_4,A1,A2,A3,A4>

recurse(Rel_4 r, lref<A1>& a1, lref<A2>& a2, lref<A3>& a3

 , lref<A4>& a4)

template<typename Rel_5, typename A1, typename A2, typename A3

 , typename A4, typename A5>

Recurse5_r<Rel_5,A1,A2,A3,A4,A5>

recurse(Rel_5 r, lref<A1>& a1, lref<A2>& a2, lref<A3>& a3

 , lref<A4>& a4, lref<A5>& a5)

template<typename Rel_6, typename A1, typename A2, typename A3

 , typename A4, typename A5, typename A6>

Recurse6_r<Rel_6,A1,A2,A3,A4,A5,A6>

recurse(Rel_6 r, lref<A1>& a1, lref<A2>& a2, lref<A3>& a3

 , lref<A4>& a4, lref<A5>& a5, lref<A6>& a6)

Declarative reading: Same as r(a1,..,aN).

Template Parameters:

30

Rel_N : A function pointer to relation that takes N arguments. All parameter types must

be logic references.

An : Effective type of the N
th

 argument to being passed. Can be a POT or lref whose

effective type is convertible to the corresponding parameter type in Rel_N.

Parameters:

r : Relation (with up to 6 parameters) to be recursed on. This should be the same as the

relation or instance of function object within which the call to recurse is made.

aN_ : [in/out] The N
th

 argument to r. Must be a logic reference.

Exceptions:

Same as those thrown by relation r.

Notes: Relation recurse provides the mechanism for making recursive calls inside

relations. Consider the following well intentioned, but erroneous, recursive call within

ancestor relation.

// ans is ancestor of descendant des

relation ancestor(lref<string> ans, lref<string> des) {

 lref<string> X;

 return parent(ans,des)

 || parent(X,des) && ancestor(ans,X);

}

The problem with the above definition is that the below attempt to use ancestor will

lead to infinite recursion:

relation r = ancestor("Leda","Castor"); // will never return!

r(); // execution will not reach here

The recursion in this case should only be performed when the relation is actually

evaluated by executing r(). This problem can be resolved by using relation recurse to

delay the recursive call in ancestor as follows:

relation ancestor(lref<string> ans, lref<string> des) {

 lref<string> X;

 return parent(ans,des)

 || parent(X,des) && recurse(&ancestor,ans,X);

}

Also refer to:

recurse_mf.

recurse_mf relation

// support for nullary member relations

template<typename Obj, typename MemRel_0>

RecurseMem0_r<Obj,MemRel_0>

recurse_mf(Obj* obj, MemRel_0 mr)

31

// remaining overloads support member relations with up to 6 arguments

template<typename Obj, typename MemRel_1, typename A1>

RecurseMem1_r<Obj,MemRel_1,A1>

recurse_mf(Obj* obj, MemRel_1 mr, lref<A1>& a1)

template<typename Obj, typename MemRel_2, typename A1, typename A2>

RecurseMem2_r<Obj,MemRel_2,A1,A2>

recurse_mf(Obj* obj, MemRel_2 mr, lref<A1>& a1, lref<A2>& a2)

template<typename Obj, typename MemRel_3, typename A1, typename A2,

typename A3>

RecurseMem3_r<Obj,MemRel_3,A1,A2,A3>

recurse_mf(Obj* obj, MemRel_3 mr, lref<A1>& a1, lref<A2>& a2

 , lref<A3>& a3)

template<typename Obj, typename MemRel_4, typename A1, typename A2,

typename A3, typename A4>

RecurseMem4_r<Obj,MemRel_4,A1,A2,A3,A4>

recurse_mf(Obj* obj, MemRel_4 mr, lref<A1>& a1, lref<A2>& a2

 , lref<A3>& a3, lref<A4>& a4)

template<typename Obj, typename MemRel_5, typename A1, typename A2,

typename A3, typename A4, typename A5>

RecurseMem5_r<Obj,MemRel_5,A1,A2,A3,A4,A5>

recurse_mf(Obj* obj, MemRel_5 mr, lref<A1>& a1, lref<A2>& a2

 , lref<A3>& a3, lref<A4>& a4, lref<A5>& a5)

template<typename Obj, typename MemRel_6, typename A1, typename A2,

typename A3, typename A4, typename A5, typename A6>

RecurseMem6_r<Obj,MemRel_6,A1,A2,A3,A4,A5,A6>

recurse_mf(Obj* obj, MemRel_6 mr, lref<A1>& a1, lref<A2>& a2

 , lref<A3>& a3, lref<A4>& a4, lref<A5>& a5

 , lref<A6>& a6)

Declarative reading: Same as (obj->*mr)(a1,..,aN).

Template Parameters:

Obj : Type whose member relation is to be recurse.

MemRel_N : Pointer to member relation in Obj that takes up to N arguments. All

parameter types must be logic references.

An : Effective type of the N
th

 argument to being passed. If lref<Pn> is the type of the N
th

parameter of relation MemRel_N, then An should be same as Pn.

Parameters:

obj : Object whose method member relation identified by mr will be recursed on. This

argument should always be the this.

mr : Member relation (with up to 6 parameters) to be recursed on. This should be the

same as the member relation within which the call to recurse_mf is made.

aN : [in/out] The N
th

 argument to mr. Must be a logic reference.

Exceptions:

Same as those thrown by mr.

32

Notes: This relation is similar to recurse_f, except that it used for recursing inside

member relations.

Also refer to:

recurse_f.

3.6 Dynamic relations

Introduction

Types Conjunctions, Disjunctions and ExDisjunctions together provide a facility to

define relations dynamically at runtime. These types are themselves relations and thus

can be mixed in with any other relations either defined statically or dynamically. Any

relation that can be implemented statically can also be implemented dynamically. Ability

to define relations at runtime allows us to define relations based on data obtained at

runtime from, for instance, a SQL query or a text file. This also naturally provides a basis

for runtime metaprogramming in the Logic paradigm.

Conjunctions relation

class Conjunctions {

public:

 Conjunctions();

 template<typename Rel> void push_back(const Rel& r);

 template<typename Rel> void push_front(const Rel& r);

 bool operator ()(void);

};

Brief Description: Represents relational conjunction expression to which clauses can be

added at runtime.

Methods

Conjunctions()

Constructs a Conjunctions relation with no clauses. An empty Conjunctions relation

will fail on evaluation.

template<typename Rel> void push_back(const Rel& r)

Adds the clause r at the back. Rel is any type that can be treated as a relation.

template<typename Rel> void push_front(const Rel& r)

Adds the clause r at the front. Rel is any type that can be treated as a relation.

bool operator()(void)

Triggers the evaluation of clauses added to Conjunctions. The contained relations are

treated as if an operator && exists between each adjacent relation.

33

Examples

In the following example, all three relations are semantically identical.

relation genderStatic(lref<string> p, lref<string> g) {

 return eq(p,"Runa") && eq(g,"female");

}

Conjunctions genderDynamic1(lref<string> p, lref<string> g) {

 Conjunctions result;

 result.push_back(eq(p,"Runa"));

 result.push_back(eq(g,"female"));

 return result;

}

Conjunctions genderDynamic2(lref<string> p, lref<string> g) {

 Conjunctions result;

 result.push_front(eq(g,"female"));

 result.push_front(eq(p,"Runa"));

 return result;

}

Also refer to

Disjunctions, ExDisjunctions.

Disjunctions relation

class Disjunctions {

public:

 Disjunctions();

 template <typename Rel> void push_back(const Rel& r);

 template <typename Rel> void push_front(const Rel& r);

 bool operator ()(void);

};

Brief Description: Represents relational inclusive disjunction expression to which

clauses can be added at runtime.

Methods

Disjunctions()

Constructs a Disjunctions relation with no clauses. An empty Disjunctions relation

will fail on evaluation.

template<typename Rel> void push_back(const Rel& r)

Adds the clause r at the back. Rel is any type that can be treated as a relation.

template<typename Rel> void push_front(const Rel& r)

Adds the clause r at the front. Rel is any type that can be treated as a relation.

34

bool operator()(void)

Triggers the evaluation of clauses added to Disjunctions. The contained relations are

treated as if an operator || exists between each adjacent relation.

Examples

In the following example, all three relations are semantically identical.

relation genderStatic(lref<string> p, lref<string> g) {

 return eq(p, "Roshan") && eq(g,"male")

 || eq(p, "Runa") && eq(g,"female");

}

Disjunctions genderDynamic1(lref<string> p, lref<string> g) {

 Disjunctions result;

 result.push_back(eq(p,"Roshan") && eq(g,"male"));

 result.push_back(eq(p,"Runa") && eq(g,"female"));

 return result;

}

Disjunctions genderDynamic2(lref<string> p, lref<string> g) {

 Disjunctions result;

 result.push_front(eq(p,"Runa") && eq(g,"female"));

 result.push_front(eq(p,"Roshan") && eq(g,"male"));

 return result;

}

Also refer to

Conjunctions, ExDisjunctions.

ExDisjunctions relation

class ExDisjunctions {

public:

 ExDisjunctions();

 template <typename Rel> void push_back(const Rel& r);

 template <typename Rel> void push_front(const Rel& r);

 bool operator ()(void);

};

Brief Description: Represents relational exclusive disjunction expression to which

clauses can be added at runtime.

Methods

ExDisjunctions()

Constructs an ExDisjunctions relation with no clauses. An empty ExDisjunctions

relation will fail on evaluation.

template<typename Rel> void push_back(const Rel& r)

35

Adds the clause r at the back. Rel is any type that can be treated as a relation.

template<typename Rel> void push_front(const Rel& r)

Adds the clause r at the front. Rel is any type that can be treated as a relation.

bool operator()(void)

Triggers the evaluation of clauses added to ExDisjunctions. The contained relations are

treated as if an operator ^ exists between each adjacent relation.

Examples

In the following example, all three relations are semantically identical.

relation genderStatic(lref<string> p, lref<string> g) {

 return (eq(p, "Roshan") && eq(g,"male"))

 ^ (eq(p, "Runa") && eq(g,"female"));

}

ExDisjunctions genderDynamic1(lref<string> p, lref<string> g) {

 ExDisjunctions result;

 result.push_back(eq(p,"Roshan") && eq(g,"male"));

 result.push_back(eq(p,"Runa") && eq(g,"female"));

 return result;

}

ExDisjunctions genderDynamic2(lref<string> p, lref<string> g) {

 ExDisjunctions result;

 result.push_front(eq(p,"Runa") && eq(g,"female"));

 result.push_front(eq(p,"Roshan") && eq(g,"male"));

 return result;

}

Also refer to

Conjunctions, Disjunctions.

36

4. Inline Logic Reference Expressions (ILE)

ILEs are expressions composed of one or more logic references and most of the common

overloadable operators. In C++, ordinarily, an expression returns the result immediately

on evaluation. Evaluation of an ILE yields a function object (more precisely, an

expression tree) that represents the semantics of the expression. Such function objects can

be evaluated at a later point in time by applying the function call operator without

arguments. The typical use of ILEs is to declaratively create simple anonymous functions

for use as arguments to relations such as eq_f, write_f, predicate etc. Consider

printing all numbers in an array that match some criteria:

bool lessThan5(lref<int> i) {

 return *i<5;

}

int nums[] = {8,2,9,4,0};

lref<int> i;

relation r = item(i, nums+0, nums+5) && predicate(lessThan5, i);

while(r())

 cout << *i << " ";

The predicate function lessThan5 can be substituted with an ILE declared directly inline

with the call to predicate:

relation r = item(i, nums+0, nums+5) && predicate(i<5);

while(r())

 cout << *i << " ";

Just like functions, ILEs can be classified as pure or impure. ILEs that induce side effects

on any externally visible objects or logic references are impure. Typically such ILEs

consist of operators such as ++. Impure ILEs, functions or member functions should be

avoided or used with extreme care when defining relations as it may interfere with

backtracking which relies on restoration of any state change. Side effects induced by

impure ILE arguments to relations are not reverted automatically during backtracking.

This can lead to improper evaluation of relations.

4.1 Closure Semantics

The closure of an ILE is the collection of all objects (lrefs and regular variables)

referenced in the ILE. All objects referenced in an ILE are stored by value in the function

object representing the ILE. In other words, by default, the closure of an ILE has lvalue

semantics. However, since copy construction of an lref creates a coreference, all lrefs in

the closure effectively exhibit lvalue semantics. Therefore we can say that all lrefs in the

closure exhibit lvalue semantics and all other objects exhibit rvalue semantics.

37

4.2 Operator overloads for creating ILEs:

The listing below describes the overloads defined for binary operator + for creating ILEs.

Similar overloads are also provided for the binary operators +, -, *, /, %, |, ^, &, <<, >>,

==, != , <, >, <=, >=, && and ||.

template <typename L, typename R>

Ile<Plus_ILE<lref<L>, Value_ILE<R> > >

operator + (lref<L>& left, const R& right);

template <typename L, typename R>

Ile<Plus_ILE<lref<L>, Value_ILE<R*> > >

operator + (lref<L>& left, R* right);

template <typename L, typename R>

Ile<Plus_ILE<Value_ILE<L>, lref<R> > >

operator + (const L& left, lref<R>& right);

template <typename L, typename R>

Ile<Plus_ILE<Value_ILE<L>, lref<R> > >

operator + (L* left, lref<R>& right);

template <typename L, typename R>

Ile<Plus_ILE<lref<L>, lref<R> > >

operator + (lref<L>& left, lref<R>& right);

template <typename L, typename R>

Ile<Plus_ILE<L, Value_ILE<R> > >

operator + (const Ile<L>& left, const R& right);

template <typename L, typename R>

Ile<Plus_ILE<L, Value_ILE<R*> > >

operator + (const Ile<L>& left, R* right);

template <typename L, typename R>

Ile<Plus_ILE<Value_ILE<L>, R> >

operator + (const L& left, const Ile<R>& right);

template <typename L, typename R>

Ile<Plus_ILE<Value_ILE<L*>, R> >

operator + (L* left, const Ile<R>& right);

template <typename L, typename R>

Ile<Plus_ILE<L,R> >

operator + (const Ile<L>& left, const Ile<R>& right);

template <typename L, typename R>

Ile<Plus_ILE<L, lref<R> > >

operator + (const Ile<L>& left, lref<R>& right);

template <typename L, typename R>

Ile<Plus_ILE<lref<L>, R> >

operator + (lref<L>& left, const Ile<R>& right);

38

Template type Plus_ILE in the above listing represents an internal type used to represent

a node in the expression tree corresponding to operator +. It implements operator()

evaluating the particular node it represents in the expression tree.

The listing below describes the overloads defined for the prefix unary operator + for

creating ILEs. Overloads similar to the following are also provided for prefix unary

operators -, ~, !, ++, and --.

template <typename T>

Ile<Prefix_Plus_ILE<lref<T> > >

operator + (lref<T> const & obj);

template <typename T>

Ile<Prefix_Plus_ILE<Ile<T> > >

operator + (Ile<T> const & expr);

The listing below describes the overloads defined for the postfix unary operator ++ for

creating ILEs. Overloads similar to the following are also provided for postfix unary

operator --.

template <typename T>

Ile<Postfix_Inc_ILE<lref<T> > >

operator ++ (lref<T> const & obj, int);

template <typename T>

Ile<Postfix_Inc_ILE<Ile<T> > >

operator ++ (Ile<T> const & expr, int);

All overloadable operators with the exception of the following are supported for the

creation of ILEs from lrefs.

- AddressOf operator &

- Dereference operator *

- Member access operator ->

- Indexing operator []

- Comma operator ,

- All forms of assignment (=, +=, *= etc.)

4.3 Named ILEs

Since there are only a limited number of operators in C++, additional ILE operations can

be introduced in the form of named functions. The named ILEs can be freely combined

with other ILE operators in an ILE expression. Below is a description of each named

ILEs provided by Castor.

at

template<typename Obj, typename Index>

Ile<At<Obj,Index> >

at (lref<Obj>& obj, Index i)

39

Brief Description: Used to perform indexed access into obj using operator [].

Template Parameters:

Obj : Any type which supports operator []. Must also define member typedef

value_type indicating the result of Obj::operator[](Index).

Index : The type of the index argument used when invoking Obj::operator[]. Can be

a lref or a POT.

Parameters:

obj : The object on which to invoke the operator [].

index: The index into obj.

Returns:

A reference to (*obj_)[*index] if index is an lref or else and returns (*obj_)[i].

Notes:

Use this named ILE where the indexing operator is required.

Exceptions:

InvalidDeref : If obj or index is not initialized at the time of evaluation.

Examples:

lref<vector<int> > lv = vector<int>();

lv->push_back(10);

lv->push_back(20);

lv->push_back(30);

lref<int> i=0;

cout << "v[0] = " << at(lv,i)() << ", v[2] = " << at(lv,2);

cout << boolalpha

 << (at(lv,i)+at(lv,1)!=at(lv,2))()); // v[0]+v[1]==v[2]

call

// For nullary through sestiary(6-ary) functions

template<typename FuncT>

Ile<Call_0<...> >

call(const FuncT& f)

template<typename FuncT, typename A1>

Ile<Call_1<...> >

call(const FuncT& f, const A1& a1)

template<typename FuncT, typename A1, typename A2>

Ile<Call_2<...> >

call(const FuncT& f, const A1& a1, const A2& a2)

40

.. additional overloads supporting upto 6 arguments to f

// For nullary through sestiary(6-ary) function objects

template<typename Ret>

Ile<Call_0<...> >

call(Ret(* f)(void))

template<typename Ret, typename P1, typename A1>

Ile<Call_1<...> >

call(Ret(* f)(P1), const A1& a1)

template<typename Ret, typename P1, typename P2

 , typename A1, typename A2>

Ile<Call_2<...> >

call(Ret(* f)(P1,P2), const A1& a1, const A2& a2)

.. additional overloads supporting upto 6 arguments to f

Brief Description: call is used to create an ILE function object that on evaluation

invokes the function or function object f.

Template Parameters:

FuncT: Type of the function object to be invoked. FuncT should be copy constructible.

Ret: Return type function to be invoked.

A1..An : Types of the arguments to be passed to the function or function object. Can be

a lref or a POT.

P1..Pn : Parameters types of the function. Any An should be either same as or

convertible to the corresponding Pn. Can be a lref or a POT.

Parameters:

f: The function or function object to invoked. Note that if f is a function object, the

actual invocation will occur on a copy of f.

a1..aN : Arguments to be passed to f. Arguments can be lrefs or POTs. Lref arguments

(if any) will be automatically dereferenced during invocation of f.

Returns:

A function object, which on evaluation returns the value produced by invoking f.

Notes:

call supports invocation of functions and function objects with up to 6 arguments. The

function object returned by call contains a copy of all its arguments (including f) to

call. Arguments are always passed to f by- value. This is the case regardless of whether

the arguments to call or the f’s parameter types are regular C++ references or logic

references.

41

Exceptions:

Any exception thrown by invocation of f.

Any exception thrown during copy construction of some AN, OR, during the conversion

of AN to PN (if AN is not same as PN).

Any exception thrown by copy construction of f if f is a function object.

Examples:

int squareroot(int i) {

 return ...;

}

int arr[] = {4,9,16,25,36};

// Basic standalone usage – calling squareroot()

lref<int> sr,i;

relation r = item(i,arr,arr+5) && eq_f(sr, call(squareroot,i));

while(r())

 cout << *sr << " ";

// Compound expressions – computing square of the square root

lref<int> j,s;

relation r2 = item(j,arr,arr+5)

 && eq_f(s, call(squareroot,j)*call(squareroot,j));

while(r2())

 cout << *s << " ";

create

template<typename T>

Ile<CreateWith0<T> >

create()

template<typename T, typename A1>

Ile<CreateWith1<T,A1> >

create(const A1& a1)

template<typename T, typename A1, typename A2>

Ile<CreateWith2<T,A1,A2> >

create(const A1& a1, const A2& a2)

.. additional overloads supporting upto 6 arguments

Brief Description: create returns a function object that on evaluation instantiates and

returns an object of type T. Arguments to create are forwarded to T’s constructor.

Template Parameters:

T: Type of object to be constructed. Depending upon the specific overload of create

used, T must support a constructor with accepts arguments of types A1 … AN. This type

must be explicitly specified.

42

A1..AN : Types of the arguments to be passed to T’s constructor when creating object of

type T. Since these types are automatically inferred by the compiler there is no need to

specify them explicitly.

Parameters:

a1..aN : Arguments to be passed to T’s constructor when creating object of type T.

Returns:

A function object, which on evaluation returns an object of type T.

Notes:

create supports construction of objects with up to 6 arguments. It can be combined with

other ILE operators or named ILEs to create more complex ILEs/function objects. For

e.g. create<complex<int> >(1,4) * 2 creates an ILE or function object that multiples

the complex number (1,4) with 2.

Exceptions:

Any exception thrown by T’s constructor.

Examples:

// if i is item in arr1, and j is item in arr2,

// generate std::pair<int,int> in p such that i+j==4

int arr1[] = { 1 , 0 , 5, 3 };

int arr2[] = { 2 , 4 ,-1, 5 };

lref<pair<int,int> > p;

lref<int> i, j;

relation r = item(i, arr1+0, arr1+4) && item(j, arr2+0, arr2+4)

 && predicate(i+j==4)

 && eq_f(p, create<pair<int,int> > (i,j));

Create::with [deprecated, use create()]

template<typename T>

class Create {

public:

 static Ile<CreateWith0<T> >

 with();

 template<typename A1>

 static Ile<CreateWith1<T,A1> >

 with(const A1& a1);

 template<typename A1, typename A2>

 static Ile<CreateWith2<T,A1,A2> >

 with(const A1& a1, const A2& a2);

 .. additional overloads supporting upto 6 arguments to f

};

43

Brief Description: Create<T>::with is used to create an ILE function object that on

evaluation returns an object of type T. Arguments to with() are forwarded to T’s

constructor.

Template Parameters:

T: Type of object to be constructed. Depending upon the overload of which that is used,

T must support a constructor that accepts arguments of types A1 … AN.

A1..AN : Types of the arguments to be passed to T’s constructor when creating object of

type T.

Parameters:

a1..aN : Arguments to be passed to T’s constructor when creating object of type T.

Returns:

A function object that on evaluation returns an object of type T.

Notes:

Create::with supports construction of objects with up to 6 arguments. It can be

combined with other ILE operators or named ILEs to create more complex ILEs/function

objects. For e.g. Create<complex<int> >::with(1,4) * 2 creates an ILE or function

object that multiples the complex number (1,4) with 2.

Exceptions:

Any exception thrown by T’s constructor

Examples:

// if i is item in arr1, and j is item in arr2,

// generate std::pair<int,int> in p such that i+j==4

int arr1[] = { 1 , 0 , 5, 3 };

int arr2[] = { 2 , 4 ,-1, 5 };

lref<pair<int,int> > p;

lref<int> i, j;

relation r = item(i, arr1+0, arr1+4) && item(j, arr2+0, arr2+4)

 && predicate(i+j==4)

 && eq_f(p, Create<pair<int,int> >::with(i,j));

get

template<typename Obj, typename MemberT>

Ile<Get<Obj,MemberT> >

get(const lref<Obj>& obj_, MemberT Obj::* mem)

Brief Description: get is used to create an ILE function object that on evaluation returns

a reference to a data member of obj_.

Template Parameters:

Obj : Any type which satisfies requirements of logic reference.

44

MemberT : The actual type of the data member to be accessed in class Obj. The type of

the pointer to data member is MemberT Obj:: *

Parameters:

obj_ : The object whose data member is to be accessed. This argument must be a logic

reference. This restriction ensures methods are invoked on the actual argument and not on

a copy of obj_.

mem : Pointer to a data member of obj_.

Returns:

A reference to (*obj_).*mem

Notes:

It can be combined with other ILE operators or named ILEs to create more complex

ILEs/function objects as shown in the example below.

Exceptions:

InvalidDeref : If obj_ is not initialized at the time of evaluation.

Examples:

struct Name {

 string firstName, lastName;

 Name(string firstName, string lastName)

 : firstName(firstName), lastName(lastName)

 { }

 bool operator==(const Name& rhs) {

 return firstName==rhs.firstName && lastName==rhs.lastName;

 }

};

// print all first names from a list<Name>

lref<Name> n;

lref<list<Name> > names = ...;

relation printFname = item(n, names)

 && write_f(get(n, &Name::firstName) + string(" "));

while(printFname());

mcall

// For nullary through sestiary(6-ary) member functions

template<typename R, typename Obj>

Ile<MCall_r0<Obj,R(Obj::*)(void),R> >

mcall(lref<Obj>& obj_, R(Obj::*mf)(void))

template<typename R, typename P1, typename Obj, typename A1>

Ile<MCall_r1<Obj,R(Obj::*)(P1),R,A1> >

mcall(lref<Obj>& obj_, R(Obj::* mf)(P1), const A1& a1_)

template<typename R, typename P1, typename P2, typename Obj

45

 , typename A1, typename A2>

Ile<MCall_r2<Obj,R(Obj::*)(P1,P2),R,A1,A2> >

mcall(lref<Obj>& obj_, R(Obj::* mf)(P1,P2), const A1& a1_

 , const A2& a2_)

.. additional overloads supporting upto 6 arguments to mf

// For nullary through sestiary(6-ary) const member functions

template<typename R, typename Obj>

Ile<MCall_r0<Obj,R(Obj::*)(void) const,R> >

mcall(lref<Obj>& obj_, R(Obj::*mf)(void) const)

template<typename R, typename P1, typename Obj, typename A1>

Ile<MCall_r1<Obj,R(Obj::*)(P1) const,R,A1> >

mcall(lref<Obj>& obj_, R(Obj::* mf)(P1) const, const A1& a1_)

template<typename R, typename P1, typename P2, typename Obj

 , typename A1, typename A2>

Ile<MCall_r2<Obj,R(Obj::*)(P1,P2) const,R,A1,A2> >

mcall(lref<Obj>& obj_, R(Obj::* mf)(P1,P2) const, const A1& a1_

 , const A2& a2_)

.. additional overloads supporting upto 6 arguments to mf

Brief Description: mcall is used to create an ILE function object that on evaluation

invokes the member function mf on obj_.

Template Parameters:

R: Return type of member function to be invoked.

P1..Pn : Parameters types of the member function. Can be a lref or a POT.

 Any An should be either same as or convertible to the corresponding Pn.

A1..An : Types of the arguments to be passed to the member function. Can be a lref or a

POT.

Parameters:

mf: Pointer to a member function.

a1..aN : Arguments to be passed to mf. Arguments can be lrefs or POTs. Lref arguments

(if any) will be automatically dereferenced during invocation of f.

Returns:

A function object, which on evaluation returns the value produced by invoking mf.

Notes:

mcall supports invocation of member functions with up to 6 arguments. The function

object returned by mcall contains a copy of all its arguments. Arguments are always

passed to mf by- value. This is the case regardless of whether the arguments to mcall or

the mf’s parameter types are regular C++ references or logic references.

46

Exceptions:

Any exception thrown by invocation of mf.

Any exception thrown during copy construction of some AN, OR, during the conversion

of AN to PN (if AN is not same as PN).

Examples:

// print non empty strings

vector<string> values = ... ;

lref<string> s;

relation r = item(s,values.begin(),values.end())

 && predicate(mcall(s,&string::length)>0);

while(r())

 cout << *s << "\n";

id

template<class T>

Ile<Id_ILE<T> > id(T& obj)

Brief Description: id is used to create an ILE function object that returns a reference to

obj on evaluation. If T is a lref, id returns a reference to the *obj.

Template Parameters:

T: Any type.

Parameters:

obj: The object to which a reference is to be taken.

Returns:

Reference to obj.

Exceptions:

None.

Notes:

ILE id is useful when the original object should be used in the ILE expression (and not a

copy, for e.g. std::cout). It also enables us to use objects that do not allow copy

construction in an ILE. Users must ensure that obj continues to exist at the time when the

ILE undergoes evaluation; otherwise it results in undefined behavior.

Another use of id is to turn lref’s into function objects that yields the dereferenced

value on evaluation.

Examples:

47

//create an ILE that prints to cout values of x

int a[] = {1,2,3};

lref<int> x;

relation r = item(x,a,a+3) && eval(ref(cout)<< x << string(" "));

while(r());

4.4 Return types for ILE operators

Since there is no way, currently, to programmatically deduce return types of arbitrary

functions or operators in C++, the following assumptions are made about the return types

of overloaded operators used in creating ILEs.

- All comparison operators (<, >=, ==, != etc.) and logical operators &&, || and

! have return type bool.

- Return type of prefix operators ++ and –– is T&, if T is the argument type.

- All other unary and binary operators are assumed to have return type same as the

type of their first argument.

If operators defined on certain types do not conform to the above assumptions and they

need to be use in an ILE expression, wrap the sub expression involving such operators

into a regular function and invoke it via call.

48

5 Higher-Order relations

zip relation

template<typename L, typename R>

Zip_r<L,R> zip(const L& l, const R& r)

Declarative reading: Succeed until both relations l and r succeed.

Template Parameters:

L, R: Any type that can be treated as a relation.

Parameters:

l: The first relation to be evaluated.

r: The second relation to be evaluated.

Exceptions:

Any exception thrown by l or r.

Notes:

Relation zip provides a facility for interleaved evaluation of relations l and r. Each

evaluation zip will evaluate relations l and r once, in that order. Relation r will be

evaluated only if l succeeds. If both l and r succeed then zip succeeds else zip will fail.

Examples:
// print parallel sum of two arrays

lref<int> i, j, sum;

int ai[] = { 1,2,3,4 }, aj[] = { 1,2,3,4,5,6,7,8 };

relation r = zip(item(i,ai,ai+4), item(j,aj,aj+5)) && eq_f(sum,i+j);

while(r())

 cout << *sum << " "; // prints: 2,4,6,8

49

6 Utils

6.1 Input/Output relations

read relation

template <typename T>

Read_r<T> read (lref<T> val)

Read_r<std::string> read(const char* val)

Declarative reading: val is the value read from std::cin.

Template Parameters:

T : A type that supports reading from std::cin using operator <<.

Parameters:

val : [in/out] The value to be read. If not initialized, it will be assigned the value that is

read. If initialized, it is compared with the value read from stream.

Exceptions:

Any exception thrown by operator >>.

Notes:

Relation read provides a relational facility for reading from std::cin. The action of

reading values from std::cin will not be reverted during backtracking. Relations

read_f and read_mf (similar to the write_f and write_mf counterparts) are not

provided since eq_f and eq_mf already provide this functionality.

Examples:
// 1) read words from std::cin and echo them to std::cout

lref<string> str;

relation r = read(str);

while(r())

 cout << *str << "\n";

// 2) read a word from input and check if it is "Logic"

if(read("Logic")()){

 ...

}

Also refer to:

readFrom, write, writeTo, eq, eq_f, eq_mf

readFrom relation

50

template <typename T>

Read_r<T> readFrom(std::istream& inputStream, lref<T> val)

Read_r<std::string> readFrom(std::istream& inputStream

 , const char* val)

Declarative reading: val is the value read from inputStream.

Template Parameters:

T : A type that supports reading from an inputStream (like std::cin) using

operator <<.

Parameters:

inputStream : The stream from which a value is to be read. Defaults to std::cin.

val : [in/out] The value to be read. If not initialized, it will be assigned the value that is

read. If initialized, it is compared with the value read from stream.

Exceptions:

Any exception thrown by operator >>.

Notes:

This relation is similar to relation read, but the is parameterized on the input stream from

which value is to be read.

Examples:
 // 1) read from strstream and std::cin until words from both match

 strstream sstrm;

 sstrm << "Words in this sentence are expected";

 lref<string> str;

 relation r = readFrom(sstrm,str) && read(str);

 while(r());

 // 2) Copy all words from a strstream to cout

 strstream sstrm;

 sstrm << "Writing must be learnt by wrote";

 lref<string> str;

 relation r = readFrom(str,sstrm) && write(str) && write(" ");

 while(r());

Also refer to:

read, write, writeTo, eq, eq_f, eq_mf

write relation

template <typename T>

Write_r<T> write(const T& obj_)

Write_r<std::string> write(const char* obj_)

Declarative reading: Write obj to std::cout.

51

Template Parameters:

T : Can be a logic reference, or any other POT. The effective type should support

writing to std::cout using operator <<. T must support copy construction.

Parameters:

obj_ : [in] The object to be printed. Can be a lref or POT

Exceptions:

InvalidDeref : If obj_ is an uninitialized logic reference at the time of evaluation.

Any exception thrown by operator <<.

Notes:

Relation write provides a simple relational facility for writing to std::cout. The action

of printing values will not be reverted during backtracking. write evaluates successfully

only once.

The second overload provides special case handling for char* arguments by treating

them as strings instead of pointer to a character. This enables usage of write relation in

context of char* arguments more directly as write(“hello”) instead of

write<string>(“hello”).

Examples:
// 1) printing strings or other types

write("Hello world.")(); // prints “Hello world.”

relation r= write("Hello ") && write("world.");

r(); // prints “Hello world.”

write(2.5)(); // prints “2.5”

// 2) printing values of logic references.

lref<int> li = 4;

write(li)(); // prints “4, ”

Also refer to:

write_f, write_mf, writeAll, read

writeTo relation

template <typename T>

Write_r<T> writeTo(std::ostream& outputStrm, T& obj_)

Write_r<std::string> writeTo(std::ostream& outputStrm, const char*

obj_)

Declarative reading: write obj to outputStrm.

Template Parameters:

52

T : Can be a logic reference, or any POT that supports writing to a ostream using

operator <<. T’s effective type should support writing to ostream using operator <<.

T must support copy construction.

Parameters:

outputStrm: The output stream to which obj_ will be printed.

obj_ : [in] The object to be printed.

Exceptions:

InvalidDeref : If obj_ is a lref that is not initialized at the time of evaluation.

Any exception thrown by operator <<.

Notes:

Relation write provides a simple relational facility for writing to ostreams. The action

of printing values to any ostream will not be reverted during backtracking. write

evaluates successfully only once.

The second overload provides special case handling for char* arguments by treating

them as strings instead of pointer to a character. This also enables usage of write relation

in context of char* arguments more directly as write(“hello”) instead of

write<string>(“hello”).

Examples:
// 1) printing strings or other types

stringstream sstrm;

writeTo(sstrm, "Hello world")(); // prints “Hello world.”

write_f relation

// overloads for function objects

template<typename Func>

WriteF_r<Func>

write_f(Func f, std::ostream& outputStrm=std::cout)

template<typename Func1, typename A1>

WriteF1_r<Func1, A1>

write_f(Func1 f, A1& a1_)

template<typename Func2, typename A1, typename A2>

WriteF2_r<Func2, A1, A2>

write_f(Func2 f, const A1& a1_, const A2& a2_)

.. additional overloads supporting upto 6 arguments to f

// overloads for function pointers

template<typename R>

WriteF_r<R(*)(void)>

write_f(R(* f)(void))

53

template<typename R, typename P1, typename A1>

WriteF1_r<R(*)(P1),A1>

write_f(R(* f)(P1), const A1& a1_)

template<typename R, typename P1, typename P2, typename A1

 , typename A2>

WriteF2_r<R(*)(P1,P2),A1,A2>

write_f(R(* f)(P1,P2), const A1& a1_, const A2& a2_)

.. additional overloads supporting upto 6 arguments to f

Declarative reading: write to std::cout value returned by invoking f (a1_ .. aN_).

Template Parameters:

FuncN: A function pointer or function object type with arity N. FuncN’s parameters

cannot be logic references.

R: Return type of the function pointer.

Pn: Type of the N
th

 parameter of function pointer. Can be an lref or POT. AN should be

either same as or convertible to the corresponding Pn.

An: Type of argument passed at position n to FuncN. Can be a POT or lref whose effective

type is convertible to the corresponding parameter type in FuncN.

Parameters:

f : The result of evaluating this function object or function pointer will be written to the

specified stream.

aN_ : [in] Argument (POT or lref) at position N whose effective value will be passed to f.

Exceptions:

Any exception thrown by operator << when applied to std::cout.

Notes:

Although arguments passed to write_f may be lrefs or POTs.

Examples:
 // 1) With regular functions

 int add(int l, int r) {

 return l+r;

 }

 lref<int> li=2, lj=3;

 write_f(add, li, lj)();

 // 2) With ILEs

 lref<int> li=2, lj=3;

 write_f(li+lj)();

Also refer to:

write, write_mf, read

54

writeTo_f relation

// overloads for function objects

template<typename Func>

WriteF_r<Func>

writeTo_f(std::ostream& outputStrm,Func f)

template<typename Func1, typename A1>

WriteF1_r<Func1, A1>

writeTo_f(std::ostream& outputStrm, Func1 f, const A1& a1_)

template<typename Func2, typename A1, typename A2>

WriteF2_r<Func2, A1, A2>

writeTo_f(std::ostream& outputStrm, Func2 f, const A1& a1_

 , const A2& a2_)

.. additional overloads supporting upto 6 arguments to f

// overloads for function pointers

template<typename R>

WriteF_r<R(*)(void)>

writeTo_f(std::ostream& outputStrm, R(* f)(void))

template<typename R, typename P1, typename A1>

WriteF1_r<R(*)(P1),A1>

writeTo_f(std::ostream& outputStrm, R(* f)(P1), const A1& a1_)

template<typename R, typename P1, typename P2, typename A1

 , typename A2>

WriteF2_r<R(*)(P1,P2),A1,A2>

writeTo_f(std::ostream& outputStrm, R(* f)(P1,P2), const A1& a1_

 , const A2& a2_)

.. additional overloads supporting upto 6 arguments to f

Declarative reading: write to outputStrm value returned by invoking f with arguments

a1_ .. aN_.

Template Parameters:

FuncN: A function pointer/object type with arity N. FuncN’s parameters cannot be logic

references.

R: Return type of the function pointer.

Pn: Type of the N
th

 parameter of function pointer. Can be an lref or POT. AN should be

either same as or convertible to the corresponding Pn.

An: Type of argument passed at position n to the FuncN type. Can be a lref or POT whose

effective type is convertible to the corresponding parameter type in FuncN.

Parameters:

f : The result of evaluating this function object or function pointer will be written to the

specified stream.

aN_ : [in] Argument (POT or lref) at position N whose effective value will be passed to f.

outputStrm: Stream to which value will be written.

55

Exceptions:

InvalidDeref : If any aN_ is a lref that has not been initialized at the time of evaluation.

Any exception thrown by operator <<.

Notes:

This relation is similar to write_f but allows explicit specification of the stream to which

data is to be written.

Also refer to:

write, write_f, write_mf, writeTo_mf, read, readFrom

write_mem relation

template<typename Obj, typename Obj2, typename MemberT>

WriteMem_r<Obj, MemberT>

write_mem(lref<Obj>& obj_, MemberT Obj2::* mem)

Declarative reading: Write to std::cout the value of (*obj_).*mem

Template Parameters:

Obj : Any type which whose member variable is to be accessed.

Obj2 : Same as Obj or a public base type of Obj.

MemberT : Type of the data member to be accessed.

Parameters:

obj_ : [in] The object whose member variable is to be accessed. This argument must be a

logic reference. This restriction ensures methods are invoked on the actual argument and

not on a copy of obj_.

mem : Pointer to a member variable of obj_ whose value is to be written out to the

std::cout.

Exceptions:

InvalidDeref : If obj_ has not been initialized at the time of evaluation.

Also any exception thrown by operator <<.

Examples:

typedef pair<string,string> fullname;

lref<fullname> me = fullname("Roshan","Naik");

write_mem(me, &fullname::first)();

Also refer to:

write, write_f, writeTo_f, writeTo_mf, writeTo_mem, read, readFrom

56

writeTo_mem relation

template<typename Obj, typename Obj2, typename MemberT>

WriteMem_r<Obj, MemberT>

writeTo_mem(std::ostream& outputStrm, lref<Obj>& obj_

 , MemberT Obj2::* mem)

Declarative reading: Write to outputStrm the value of (*obj_).*mem

Template Parameters:

Obj : Any type which whose member variable is to be accessed.

Obj2 : Same as Obj or a public base type of Obj.

MemberT : A Type of the data member to be accessed.

Parameters:

obj_ : [in] The object whose member variable is to be accessed. This argument must be a

logic reference. This restriction ensures methods are invoked on the actual argument and

not on a copy of obj_.

mem : Pointer to a member variable of obj_ whose value is to be written to outputStrm.

outputStrm: Stream to which the value will be written.

Exceptions:

InvalidDeref : If obj_ has not been initialized at the time of evaluation.

Also any exception thrown by operator <<.

Examples:

typedef pair<string,string> name;

lref<name> me = name("Roshan","Naik");

stringstream sstrm;

writeTo_mem(sstrm, me, &name::first)();

Also refer to:

write, write_f, writeTo_f, writeTo_mf, writeTo_mem, read, readFrom

write_mf relation

// Overloads for non-const member functions

template<typename R, typename Obj, typename Obj2>

WriteMF_r<Obj,R(Obj::*)(void)>

write_mf(lref<Obj>& obj_, R(Obj2::*mf)(void))

template<typename R, typename P1, typename Obj, typename Obj2

 , typename A1>

WriteMF1_r<Obj,R(Obj::*)(P1),A1>

write_mf(lref<Obj>& obj_, R(Obj2::* mf)(P1), const A1& a1_)

template<typename R, typename P1, typename P2, typename Obj

57

 , typename Obj2, typename A1, typename A2>

WriteMF2_r<Obj,R(Obj::*)(P1,P2),A1,A2>

write_mf(lref<Obj>& obj_, R(Obj2::* mf)(P1,P2), const A1& a1_

 , const A2& a2_)

.. additional overloads supporting upto 6 arguments to mf

// Overloads for const member functions

template<typename R, typename Obj, typename Obj2>

WriteMF_r<Obj,R(Obj::*)(void) const>

write_mf(lref<Obj>& obj_, R(Obj2::*mf)(void) const)

template<typename R, typename P1, typename Obj, typename Obj2

 , typename A1>

WriteMF1_r<Obj,R(Obj::*)(P1) const,A1>

write_mf(lref<Obj>& obj_, R(Obj2::* mf)(P1) const, const A1& a1_)

template<typename R, typename P1, typename P2, typename Obj

 , typename Obj2, typename A1, typename A2>

WriteMF2_r<Obj,R(Obj::*)(P1,P2) const,A1,A2>

write_mf(lref<Obj>& obj_, R(Obj2::* mf)(P1,P2) const, const A1& a1_

 , const A2& a2_)

.. additional overloads supporting upto 6 arguments to mf

Declarative reading: write to std::cout the value returned by invoking
(*obj_).*mf(a1_ .. aN_)

Template Parameters:

Obj : A type whose member function is to be invoked.

Obj2 : Same as Obj or a public base class of Obj.

R : Return type of the member function.

Pn: Type of the n
th

 parameter of member function.

An : Type of the n
th

 argument to being passed. Can be a POT or lref whose effective type

is convertible to the corresponding parameter type Pn.

Parameters:

obj_ : [in] The object whose member function referred to by mf is to be evaluated. This

argument must be a logic reference. This restriction ensures methods are invoked on the

actual argument and not on a copy of obj_.

mf : The result of evaluating this member function will be written to the specified stream.

aN_ : [in] Argument (POT or lref) at position N whose effective value will be passed to

mf.

Exceptions:

InvalidDeref : If obj_ or, if any aN_ is a lref that has not been initialized at the time of

evaluation.

Any exception thrown by operator <<.

58

Examples:
 // read string from std::cin and print its length
 lref<string> s;

 relation r = read(s) && write_mf(s,&string::size);

 r();

Also refer to:

write, write_f, writeTo_f, writeTo_mf, read, readFrom

writeTo_mf relation

// Overloads for non-const member functions

template<typename R, typename Obj, typename Obj2>

WriteMF_r<Obj,R(Obj::*)(void)>

writeTo_mf(std::ostream& outputStrm, lref<Obj>& obj_

 , R(Obj2::*mf)(void))

template<typename R, typename P1, typename Obj, typename Obj2

 , typename A1>

WriteMF1_r<Obj,R(Obj::*)(P1),A1>

writeTo_mf(std::ostream& outputStrm, lref<Obj>& obj_, R(Obj2::* mf)(P1)

 , const A1& a1_)

template<typename R, typename P1, typename P2, typename Obj

 , typename Obj2, typename A1, typename A2>

WriteMF2_r<Obj,R(Obj::*)(P1,P2),A1,A2>

writeTo_mf(std::ostream& outputStrm, lref<Obj>& obj_

 , R(Obj2::* mf)(P1,P2), const A1& a1_, const A2& a2_)

// Overloads for const member functions

template<typename R, typename Obj, typename Obj2>

WriteMF_r<Obj,R(Obj::*)(void) const>

writeTo_mf(std::ostream& outputStrm, lref<Obj>& obj_, R(Obj::*mf)(void)

const)

template<typename R, typename P1, typename Obj, typename Obj2

 , typename A1>

WriteMF1_r<Obj,R(Obj::*)(P1) const,A1>

writeTo_mf(std::ostream& outputStrm, lref<Obj>& obj_

 , R(Obj2::* mf)(P1) const, const A1& a1_)

template<typename R, typename P1, typename P2, typename Obj

 , typename Obj2, typename A1, typename A2>

WriteMF2_r<Obj,R(Obj::*)(P1,P2) const,A1,A2>

writeTo_mf(std::ostream& outputStrm, lref<Obj>& obj_

 , R(Obj2::* mf)(P1,P2) const, const A1& a1_, const A2& a2_)

Declarative reading: write to outputStrm the value returned by invoking
(*obj_).*mf(a1_ .. aN_)

Template Parameters:

Obj : A type whose member function is to be invoked.

59

Obj2 : Same as Obj or a public base class of Obj.

R : Return type of the member function.

Pn: Type of the n
th

 parameter of member function.

An : Type of the n
th

 argument to being passed. Can be a POT or lref whose effective type

is convertible to the corresponding parameter type Pn.

Parameters:

obj_ : [in] Object on which method is to be invoked. This argument must be a logic

reference. This restriction ensures methods are invoked on the actual argument and not on

a copy of obj_.

mf : Pointer to member function whose result will be written to the specified stream.

aN_ : [in] Argument (POT or lref) at position N whose effective value will be passed to

mf.

outputStrm: Stream to which value will be written.

Exceptions:

InvalidDeref : If obj_ or, if any aN_ is a lref that has not been initialized at the time of

evaluation.

Any exception thrown by operator <<.

Notes:

This relation is similar to write_mf but allows explicit specification of the stream to

which data is to be written.

Examples:
 // read string from std::cin and print its length to a file
 ofstream myfile("example.txt");

 lref<string> s = "Castor";

 writeTo_mf(myfile, s, &string::size)();

Also refer to:

write, write_f, write_mf, writeTo_f, writeAll, writeAllTo, read, readFrom

writeAll relation

template<typename Itr>

WriteAll_r<Itr> writeAll(Itr begin_, Itr end_

 , const std::string& separator=", "

 , const std::string& terminateWith="\n")

template<typename Cont>

relation writeAll(lref<Cont>& cont_

 , const std::string& separator=", "

 , const std::string& terminateWith="\n")

Declarative reading: Write all values in the container cont_ or in the range [begin_,

end_) to std::cout.

60

Template Parameters:

Itr : A pointer OR an iterators OR a logic reference to a pointer OR a logic reference

to an iterator. Dereferencing the effective value of Itr should yield a value that is

writable to cout using << operator.

Cont : A container type. Cont should provide methods begin() and end() for

obtaining iterators to beginning and one past the end of container. The element type

should be writable to cout using << operator.

Parameters:

begin_ : [in] Iterator to the beginning of a sequence to be printed to cout.

end_ : [in] Iterator to one past the end of a sequence to be printed to cout.

cont_ : [in] A logic reference to a container whose elements are to be printed to cout.

separator : The string to be printed between two consecutive items in the sequence.

terminateWith : The string to be printed after all items in the sequence have been

printed.

Exceptions:

InvalidDeref : If begin_, end_ or cont_ is an uninitialized logic reference at the time

of evaluation.

Any exception thrown by operator <<.

Notes:

Relation writeAll provides a simple relational facility for writing a sequence of values

to std::cout. The action of printing values will not be reverted during backtracking.

writeAll evaluates successfully only once.

Examples:
// 1) print an array using pointers

string as[] = {"1","2","3","4"};

writeAll(as,as+4)(); // prints: “1, 2, 3, 4\n”

// 2) print items in vector (using iterators) using space as separator

writeAll(as.begin(),as.end(), " ")(); // prints: “1 2 3 4\n”

// 3) print items in vector using lref<iterator>

lref<vector<string> > lvs = vector<string>(as,as+4);

lref<vector<string>::iterator> b,e;

relation r = begin(lvs,b) && end(lvs,e) && writeAll(b,e);

while(r());

// 4) printing values in a container

lref<vector<string> > lvs = vs;

writeAll(lvs)();

Also refer to:

write, write_f, write_mf, writeTo_f, writeAllTo, writeTo_mf, read, readFrom

61

writeAllTo relation

template<typename Itr>

WriteAll_r<Itr> writeAllTo(std::ostream& outputStrm, Itr begin_

 , Itr end_, const std::string& separator=" "

 , const std::string& terminateWith="\n")

)

template<typename Cont>

relation writeAllTo(std::ostream& outputStrm, lref<Cont>& cont_

 , const std::string& separator=" "

 , const std::string& terminateWith="\n")

Declarative reading: Write all values in the container cont_ or in the range [begin_,

end_) to std::cout.

Template Parameters:

Itr : A pointer, an iterator, a logic reference to a pointer or a logic reference to an

iterator. Dereferencing the effective value of Itr should yield a value that is writable to

outputStrm using << operator.

Cont : A container type. Cont should provide methods begin() and end() for

obtaining iterators to beginning and one past the end of container. The element type

should be writable to outputStrm using << operator.

Parameters:

outputStrm: Stream to which values will be written.

begin_ : [in] Iterator to the beginning of a sequence to be printed to cout.

end_ : [in] Iterator to one past the end of a sequence to be printed to cout.

cont_ : [in] A logic reference to a container whose elements are to be printed to cout.

separator : The string to be printed between two consecutive items in the sequence.

Defaults to a single space.

terminateWith : The string to be printed after all items in the sequence have been

printed.

Exceptions:

InvalidDeref : If begin_, end_ or cont_ is an uninitialized logic reference at the time

of evaluation.

Any exception thrown by operator <<.

Notes:

Relation writeAll provides a simple relational facility for writing a sequence of values

to an ouput stream. The action of printing values will not be reverted during

backtracking. writeAll evaluates successfully only once.

Examples:
// 1) print an array to stringstream using pointers

string as[] = {"1","2","3","4"};

62

stringstream sstrm;

writeAllTo(sstrm,as,as+4, " ")();

// 2) print (comma separated) items in vector using lref<iterator>

stringstream sstrm;

lref<vector<string> > lvs = vector<string>(as,as+4,",");

lref<vector<string>::iterator> b,e;

relation r = begin(lvs,b) && end(lvs,e) && writeAllTo(sstrm,b,e);

while(r());

// 3) printing values in a container

lref<vector<string> > lvs = vs;

writeAll(lvs)();

Also refer to:

write, write_f, write_mf, writeTo_f, writeAll, writeTo_mf, read, readFrom

63

6.2 Sequences and Containers

empty relation

template<typename Cont>

relation empty(lref<Cont> c)

template<typename Cont>

Boolean empty(const Cont& c)

Declarative reading: Container c is empty.

Template Parameters:

Cont : Must satisfy requirements of standard C++ containers [$23.1]. Cannot be a const

qualified type if using the first overload.

Parameters:

c : [in/out] If c is initialized, it will be tested for emptiness, otherwise it will be initialized

with an empty container of type Cont.

Notes:

Evaluates successfully if container c is empty. If c is initialized, relation empty performs

the test for emptiness by comparing c == Cont(). Thus default construction of type

Cont is expected to yield an empty container. Similarly if c is not initialized, c will be

assigned a default constructed instance of type Cont.

Also refer to:
size

head relation

template<typename Seq>

Head_r<Seq> head(lref<Seq>& seq_, lref<typename Seq::value_type> h)

Declarative reading: head of seq_ is h.

Template Parameters:

Seq: Must satisfy the requirements of standard C++ sequences [$23.1.1]. Cannot be a

const qualified type.

Parameters:

seq_ : [in] Sequence whose head element is of interest.

h : [in/out] The first element in seq_.

Exceptions:

InvalidDeref : If seq_ is not initialized at the time of evaluation.

64

Notes:

The first element in seq_ is obtained by dereferencing the begin() iterator. If h is not

initialized, on successful evaluation h will point to this element.

Currently, head does not accept a const container as argument. We hope to address this

limitation in the future.

Also refer to:

head_n, tail, tail_n, head_tail, head_n_tail, next, prev.

head_n relation

template<typename Seq, typename HeadSeq>

relation head_n(lref<Seq>& seq_

 , lref<typename HeadSeq::size_type> n

 , lref<HeadSeq>& h)

Declarative reading: h contains first n items from sequence seq_.

Template Parameters:

Seq : Must satisfy requirements of standard C++ sequences [$23.1.1].

HeadSeq : Must satisfy requirements of standard C++ sequences [$23.1.1]. Cannot be a

const qualified type.

Parameters:

seq_ : [in] Sequence whose first n_ elements is of interest.

n : [in/out] Number of items in h. 0 <= n <= size of seq_.

h : [in/out] Sequence containing copies of first n elements from seq_, i.e. the head

sequence.

Exceptions:

InvalidDeref : If seq_ is not initialized at the time of evaluation.

Notes:

If n is greater than the number of elements in seq_, the relation fails. h and seq_ may be

of different types i.e. h can be a list and seq_ may be a vector.

Also refer to:

head, tail, tail_n, head_tail, head_n_tail.

head_tail relation

template<typename Seq, typename TailSeq>

relation head_tail(lref<Seq>& seq_

 , lref<typename TailSeq::value_type> h

 , lref<TailSeq>& t)

65

Declarative reading: h and t respectively form the head and tail of seq_.

Template Parameters:

Seq : Must satisfy the requirements of standard C++ sequences [$23.1.1].

TailSeq : Must satisfy requirements of standard C++ sequences [$23.1.1]. Cannot be

const qualified type.

Parameters:

seq_ : [in] Sequence whose head and tail elements are of interest.

h : [in/out] head of seq_.

t : [in/out] tail of seq_.

Notes:

h and t are copies of the elements comprising the head and tail of seq_. t may be a

different type than seq_. head_tail provides a convenient way to determine head and

tail in a single step instead of obtaining them separately using relations head and tail.

Also refer to:

head, head_n, tail, tail_n, head_n_tail.

head_n_tail relation

template<typename Seq, typename HeadSeq>

relation head_n_tail(lref<Seq>& seq_

 , lref<typename HeadSeq::size_type> n

 , lref<HeadSeq>& h

 , lref<HeadSeq>& t)

Declarative reading: h is head sequence and t is tail sequence of seq_ such that size of

h is n.

Template Parameters:

Seq : Must satisfy the requirements of standard C++ sequences [$23.1.1].

HeadSeq : Must satisfy requirements of standard C++ sequences [$23.1.1]. This type is

the same for both head and tail. Cannot be a const qualified type.

Parameters:

seq_ : [in] Sequence whose head and tail elements are of interest.

n : [in/out] size of head. 0 <= n <= size of seq_.

h : [in/out] head sequence from seq_ of size n.

t : [in/out] tail of seq_.

Notes:

h and t are copies of the elements comprising the head and tail of seq_. Tail t comprises

of the all the elements in seq_ following the head sequence h.

66

Also refer to:

head, head_n, tail, tail_n, head_n_tail.

insert relation

template<typename Seq>

relation insert(lref<typename Seq::value_type> value_

 , lref<typename Seq::iterator> b_

 , lref<typename Seq::iterator> e_

 , lref<Seq>& insertedSeq)

Declarative reading: inserting value_ somewhere into [b_,e_) yields sequence

insertedSeq.

Template Parameters:

Seq: Type representing a sequence of values. Seq must satisfy the requirements of

standard C++ sequences [$23.1.1].

Parameters:

value_ : [in] The value to be inserted.

b_ : [in] Iterator to the start of a sequence of values into which value_ needs to be

inserted.

e_ : [in] Iterator to one past the end of a sequence of values into which value_ needs to

be inserted.

insertedSeq : [in/out] Sequence containing values from the sequence [b_,e_) in

addition to value_. Contains exactly std::distance(b_,e_)+1 elements.

Notes:

Relative order of values in [b_,e_) is preserved in insertedList.

Examples:

Number 9 can be inserted into sequence (1,2) in three ways:

(9,1,2), (1,9,2) and (1,2,9). The following code prints each of these combinations.

 list<int> li;

 li.push_back(1); li.push_back(2);

 lref<list<int> > insertedSeq;

 relation r = insert(9, li.begin(), li.end(), insertedSeq);

 while(r()) {

 copy(insertedSeq->begin(), insertedSeq->end()

 , ostream_iterator<int>(cout," "));

 cout << "\n";

 }

Also refer to:

insert_seq, merge.

67

insert_seq relation

template<typename Seq>

relation insert_seq(lref<typename Seq::iterator> valuesB_

 , lref<typename Seq::iterator> valuesE_

 , lref<typename Seq::iterator> b_

 , lref<typename Seq::iterator> e_

 , lref<Seq>& insertedSeq)

Declarative reading: inserting the sequence of values in [valuesB_,valuesE_)

somewhere into [b_,e_) yields sequence insertedSeq.

Template Parameters:

Seq: Type representing a sequence of values. Seq must satisfy the requirements of

standard C++ sequences [$23.1.1].

Parameters:

value_ : [in] The value to be inserted.

b_ : [in] Iterator to the start of a sequence of values into which value_ needs to be

inserted.

e_ : [in] Iterator to one past the end of a sequence of values into which value_ needs to

be inserted.

insertedSeq : [in/out] Sequence containing values from the sequence [b_,e_) in

addition to value_. It contains exactly std::distance(b,e)+1 elements.

Notes:

Relative order of values in [b_,e_) is preserved in insertedSeq. Exact order of values

in [valuesB_,valuesE_) is preserved in insertedSeq. In other words, inserting the

exact sequence [valuesB_,valuesE_) at some position into the sequence [b_,e_)

yields insertedSeq.

Example:

Sequence (8,9) can be inserted into sequence (1,2) in three ways:

(8,9,1,2), (1,8,9,2) and (1,2, 8,9). The following code prints each of these combinations.

 list<int> li; // sequence to insert into

 li.push_back(1); li.push_back(2);

 list<int> values; // sequence to insert

 values.push_back(8); values.push_back(9);

 lref<list<int> > insertedSeq;

 relation r = insert_seq(values.begin(), values.end()

 , li.begin(), li.end(),insertedSeq);

 while(r()) {

 copy(insertedSeq->begin(), insertedSeq->end()

 , ostream_iterator<int>(cout," "));

 cout << "\n";

 }

Also refer to:

insert, merge.

68

merge relation

template<typename Seq>

relation merge(lref<Seq>& l_, lref<Seq>& r_, lref<Seq>& m)

Declarative reading: Merging sorted sequences l_ and r_ yields sorted sequence m.

Template Parameters:

Seq : Must satisfy requirements of standard C++ sequences [$23.1.1]. Cannot be a

const qualified type.

Parameters:

l_, r_ : [in] Sorted sequences to be merged.

m : [in/out] Merged sequence.

Exceptions:

InvalidDeref : If l_ or r_ are not initialized at the time of evaluation.

Notes:

This is the relational equivalent of std::merge.

Also refer to:

insert, insert_seq.

not_empty relation

template<typename Cont>

relation not_empty(lref<Cont> c_)

template<typename Cont>

Boolean not_empty(const Cont& c_)

Declarative reading: Container c_ is not empty.

Template Parameters:

Cont : Must satisfy requirements of standard C++ containers [$23.1].

Parameters:

c_ : [in] Container to be tested for emptiness. Must be

Notes:

Evaluates successfully if container c_ is not empty. Unlike relation empty, the container

argument c_ must be initialized at the time of evaluation. Test of emptiness is performed

using method Cont::size.

Also refer to:

69

empty, size.

sequence relation

template<typename Seq>

Sequence_r<Seq> sequence(lref<Seq>& seq)..

 (lref<T> item)..(const ConvertibleToT& item)..

 (lref<Seq>& items)..

 (Iter start, Iter end)..

 (LrefIter start, LrefIter end)

// where

// T = Seq::value_type

// LrefIter = lref<Seq::iterator>

// ConvertibleToT = any type convertible to T

Declarative reading: seq is a sequence comprising of the arguments following it.

Template Parameters:

Seq : Must satisfy requirements of standard C++ sequences [$23.1.1].

Parameters (Fixed):

seq : [in/out] The sequence to be unified with the other arguments. It must be a logic

reference type. Passing regular container types directly is disabled as it leads to implicitly

passing a copy of the original (which can be inefficient) and can also lead to unexpected

and surprising behavior.

Parameters (Variadic):

After seq, the following parameter types are supported by sequence. Each of these should

be separately enclosed in a pair of (). Any of the following variadic arguments may be

optionally provided and in any order.

a) lref<T> item : Represents a single element in the sequence. This allows passing

arguments of type lref<T>.

b) ConvertibleToT& item : Represents a single element in the sequence. This allows

passing values of arbitrary types that are convertible to T.

c) lref<Seq>& items : Represents a subsequence of elements occurring in sequence.

This allows passing of logic reference to a sequence of the same type as seq. Passing a

sequence directly by value is not supported, the argument must be a lref.

d) Iter start, Iter end : A pair of iterators representing a subsequence of elements

occurring in seq. This allows passing iterators by value. The iterator type must of type

Seq::iterator.

e) LrefIter start, LrefIter end : A pair of logic references to iterators

representing a subsequence of elements occurring in seq. This allows the use of logic

references to iterators as arguments where the iterator type is Seq::iterator.

70

Note that arguments of type lref<ConvertibleToT> are not supported currently.

Similarly when using iterator pairs, they must be iterators to a sequence of the same type.

Using vector<T>::iterator pairs when seq is of type list<T> is not supported. All

arguments other than the seq must be initialized at the time of evaluation.

Exceptions:

InvalidDeref : If any logic reference argument other than the first is an not initialized at

the time of evaluation.

Notes:

sequence is a variadic relation. That is, its arity (number of arguments) is not predefined.

The style of argument passing used in sequence is different compared to the traditional C

style techniques used in standard variadic functions like printf and scanf. Each

argument to sequence is surrounded by a () pair. Thus the syntax for passing 4

arguments looks like sequence(s)(7)(8)(9) instead of sequence(s,7,8,9). This

method of variadic argument passing allows relation sequence to automatically preserve

full type information for each argument without additional assistance on behalf of the

programmer.

The first argument represents a sequence comprising of elements described by the

remaining arguments. For instance if s is a lref<list<int> >, then

sequence(s)(7)(8)(9) unifies s with the sequence {7,8 ,9} . Argument s may or may

not be initialized. If s is not initialized, it will be assigned a list<int> containing

elements 7,8 and 9 in that order. If s is initialized, it will be tested to see if it contains the

exactly the three elements 7, 8 and 9 in order. The first argument must be logic reference

to any sequence type. The remaining arguments can be classified into two kinds. The first

kind is values representing individual elements in the sequence. The second kind is a

sequence representing a span of elements to need to appear in the first argument. This is

specified using either iterator pairs or a logic reference to sequence. For example, if li is

a list<int> then sequence(s)(li.begin(),li.end()) will unify s with all elements

in li. Both kinds of arguments may appear in any order and can be logic references or

regular types:

In many cases, the flexibility and brevity provided by variadic arguments in sequence

may not be needed. In such situations, relations eq and eq_seq provide more light weight

and efficient alternatives.

Examples:

// 1) compare sequence with {3,4,5}

lref<vector<int> > vi = /* {3, 4, 5} */;

lref<int> li = 4;

assert(sequence(vi)(3)(li)(5)()); // vi == {3,4,5}

// 2) generate sequence {3,4,5}

71

lref<vector<int> > s; // not initialized

sequence(s)(3)(4)(5)(); // s = {3,4,5}

// 3) test for empty sequence

list<int> emptyList;

assert(sequence<list<int> >(emptyList)())

// 4) Iterator pairs : generate sequence comprised of values in vi

followed by 4

lref<vector<int> > s;

vector<int> vi = /* {1,2,3} */ ;

int four = 4;

sequence(s)(vi.begin(),vi.end())(four)(); // s = {1,2,3,4}

// 5) Iterator pairs : generate sequence using lref<iterator>

lref<vector<int> > s; // not initialized

vector<int> vi = /* {1,2,3} */ ;

lref<vector<int>::iterator> b,e;

relation r = begin<vector<int> >(vi,b)

 && end<vector<int> > (vi,e)

 && sequence(s)(b,e); // s = {1,2,3}

// 6) Simple containers comparison

lref<vector<int> > s; // not initialized

vector<int> vi = /* {1,2,3} */ ;

lref<vector<int>::iterator> b,e;

relation r = sequence(s)(vi.begin(),vi.end()); // s = {1,2,3}

// unification with pair of iterators can be also be done with

// the more light weight but less flexible relation eq_seq:

relation r2 = eq_seq(s,vi.begin(),vi.end())

// simplest way to unify containers directly is to use eq:

relation r3 = eq(s,vi);

Also refer to:
eq_seq, eq, item, getValues, size, begin, end, head, tail, head_tail,

head_n, tail_n, head_n_tail.

size relation [deprecated. Use size_of()]

template<typename Cont>

Size_r<Cont> size(lref<Cont>& cont_, lref<typename Cont::size_type> sz)

Declarative reading: Size of container cont_ is sz.

Template Parameters:

Cont : Must satisfy requirements of standard C++ containers [$23.1].

Parameters:

cont_ : [in] Container whose size is to be determined.

sz : [in/out] Size of cont_.

72

Exceptions:

InvalidDeref : If cont_ is not initialized at the time of evaluation.

Notes:

Size of cont_ is determined by invoking its size member function.

Also refer to:

size_of, empty, not_empty.

tail relation

template<typename Seq, typename TailSeq>

Tail_r<Seq,TailSeq> tail(lref<Seq>& seq_, lref<TailSeq>& t)

Declarative reading: Tail of seq_ is t.

Template Parameters:

Seq: Must satisfy the requirements of standard C++ sequences [$23.1.1].

TailSeq : Must satisfy requirements of standard C++ sequences [$23.1.1].

Parameters:

seq_ : [in] Container whose tail is of interest.

t : [in/out] The tail sequence of cont_.

Exceptions:

InvalidDeref : If seq_ is not initialized at the time of evaluation.

Notes:

The tail of a sequence comprises of all elements in sequence except for the first one (i.e.

the head) .

Also refer to:

head, head_n, tail_n, head_tail, head_n_tail, next, prev.

tail_n relation

template<typename Seq, typename TailSeq>

relation tail_n(lref<Seq>& seq_

 , lref<typename TailSeq::size_type> n

 , lref<TailSeq>& t)

Declarative reading: t contains last n items from sequence seq_.

Template Parameters:

Seq : Must satisfy requirements of standard C++ sequences [$23.1.1].

TailSeq : Must satisfy requirements of standard C++ sequences [$23.1.1].

73

Parameters:

seq_ : [in] Sequence whose last n elements are of interest.

n : [in/out] Number of items in t. 0 <= n <= size of seq_.

t : [in/out] Sequence containing copies of last n element from seq_.

Exceptions:

IndexOutOfBounds: If size of seq_ is less than n_.

InvalidDeref : If seq_ or n_ is not initialized at the time of evaluation.

Notes:

t and seq_ may be of different types. t is a copy of the elements comprising the tail of

seq_.

Also refer to:

head, head_n, tail, head_tail, head_n_tail.

74

6.3 Aggregates

average TLR

template<class T>

Average_tlr<..> average(lref<T>& i)

template<class T, class Adder>

Average_tlr<..> average(lref<T>& i, Adder adder)

Declarative reading: Average i.

Template Parameters:

T: Requires operator +(T,T) to be defined for this type unless addition function is

explicitly provided. T must support division with size_t using operator/.

Adder: is a binary function pointer/object which returns a T and takes two args of type
T.

Parameters:

i: [in & out] in: The items to be averaged. out: The average.

adder: Function pointer/object used to add the values in container.

Exceptions:

InvalidArg : If i is initialized at the time of first evaluation.

Notes:

Argument i is used both as input and output simultaneously. Once all the values have

been read from i, the result will be produced in i. Thus TLR average can only be used

to generate a result.

Examples:
 // average of nums[]

 int nums[] = { 1, 2, 3, 4, 5 };

 relation r = item(i,nums,nums+5) >>= average(i);

 r();

 cout << *i; // prints 3

average_of relation

template<class Cont>

AvgOf_r<..>

average_of(lref<Cont>& cont_, const lref<typename Cont::value_type>& a)

template<class Cont, class Adder>

AvgOf_r<..>

average_of(lref<Cont>& cont_, const lref<typename Cont::value_type>& a

 , Adder adder)

Declarative reading: Average value in cont_ is a.

75

Template Parameters:

Cont: Must satisfy requirements of standard C++ containers [$23.1].

Cont::value_type should support addition using operator + unless an explicit

addition function is provided. Cont::value_type should be divisible by size_t using

operator /.

Adder: is a binary function pointer/object which returns a T and takes two args of type
T.

Parameters:

cont_ : [in] Container whose average is to be determined.

a: [in/out] The average.

Notes:

This relation may be used in generate mode (leaving a uninitialized) or in test mode (by

initializing a).

Exceptions:

InvalidDeref : If cont_ is not initialized at the time of evaluation.

count TLR

template<class T>

Count_tlr<..> count(const lref<T>& n)

Declarative reading: n is number of times the relation to the left of >>= succeeded.

Template Parameters:

T: an integral type that supports prefix increment.

Parameters:

n : [out] The number of times the relation to the left of >>= succeeded. n should not be

initialized as it is a purely an out parameter.

Exceptions:

InvalidArg: If n is pre-initialized at the time of first evaluation.

Any exception thrown by applying the prefix operator ++ on T.

Notes:

count succeeds only once.

Examples:

// count even numbers in the array

int ai[] = { 10,2,11,4,6,15,7,3,9,8 };

lref<int> j, n;

relation r = item(j,ai,ai+10) && predicate(j%2==0) >>= count(n);

76

if(r())

 cout << *n << " ";

max TLR

template<class T>

Max_tlr<..> max(const lref<T>& n)

template<class T, class Cmp>

Max_tlr<..> max(const lref<T>& n, Cmp cmp)

Declarative reading: Max n.

Template Parameters:

T: is LessThanComparable [$20.1.2].

Cmp: is a binary function pointer/object which returns a bool and accepts arguments (T,
T).

Parameters:

n: [in & out] in: The items whose max is to be computed. out: The max value.

cmp: Function pointer/object used to compare values.

Exceptions:

InvalidArg : If n is pre-initialized at the time of first evaluation.

Notes:

Argument n is used both as input and output simultaneously. Once all the values have

been read from n, the result will be produced in n. Thus TLR max can only be used to

generate a result.

Examples:

 int nums[] = { 1, 2, 3, 4, 5 };

 relation r = item(i,nums,nums+5) >>= max(i);

 r();

 cout << *i; // prints 5

max_of relation

template<class Cont>

MaxOf_r<..>

max_of(lref<Cont>& cont, const lref<typename Cont::value_type>& m)

template<class Cont, class Cmp>

MaxOf_r<..>

max_of(lref<Cont>& cont, const lref<typename Cont::value_type>& m

 , Cmp cmp)

77

Declarative reading: Max value in container is m.

Template Parameters:

Cont: Must satisfy requirements of standard C++ containers [$23.1].

Cont::value_type should satisfy EqualityComparable[$20.1.1] and

LessThanComparable[$20.1.2]

Cmp: A binary function pointer/object which returns bool and accepts arguments
(Cont::value_type, Cont::value_type).

Parameters:

cont_ : [in] Container whose max value is to be determined.

m: [in/out] The max value.

Exceptions:

InvalidDeref : If cont_ is not initialized at the time of evaluation.

Notes:

This relation may be used in generate mode (leaving m uninitialized) or in test mode (by

initializing m). On successful evaluation, in generate mode, m refers to a copy of the max

value.

min TLR

template<class T>

Min_tlr<..> min(const lref<T>& n)

template<class T, class Cmp>

Min_tlr<..> min(const lref<T>& n, Cmp cmp)

Declarative reading: Min n.

Template Parameters:

T: is LessThanComparable [$20.1.2].

Cmp: is a binary function pointer/object which returns a bool and accepts arguments (T,
T).

Parameters:

n: [in & out] in: The items whose min is to be computed. out: The min value.

cmp: Function pointer/object used to compare values.

Exceptions:

InvalidArg : If n is pre-initialized at the time of first evaluation.

Notes:

Argument n is used both as input and output simultaneously. Once all the values have

been read from n, the result will be produced in n. Thus TLR min can only be used to

generate a result.

78

Examples:

 int nums[] = { 1, 2, 3, 4, 5 };

 relation r = item(i,nums,nums+5) >>= min(i);

 r();

 cout << *i; // prints 1

min_of relation

template<class Cont>

MinOf_r<..>

min_of(lref<Cont>& cont_, const lref<typename Cont::value_type>& m)

template<class Cont, class Cmp>

MinOf_r<..>

min_of(lref<Cont>& cont_, const lref<typename Cont::value_type>& m

 , Cmp cmp)

Declarative reading: Min value in container is m.

Template Parameters:

Cont: Must satisfy requirements of standard C++ containers [$23.1] and

Cont::value_type should satisfy EqualityComparable[$20.1.1] and

LessThanComparable[$20.1.2].

Cmp: A binary function pointer/object which returns bool and accepts arguments
(Cont::value_type, Cont::value_type).

Parameters:

cont_ : [in] Container whose min value is to be determined.

m: [in/out] The min value.

Exceptions:

InvalidDeref : If cont_ is not initialized at the time of evaluation.

Notes:

This relation may be used in generate mode (by leaving m uninitialized) or in test mode

(by initializing m). On successful evaluation, in generate mode, m refers to a copy of the

min value.

reduce TLR

template<class T, class BinFunc>

Reduce_tlr<..> reduce(lref<T>& i, BinFunc acc)

Declarative reading: Reduce i using accumulator acc.

Template Parameters:

T: type of the values to be reduced.

79

BinFunc: is a binary function pointer/object which returns T and accepts arguments (T,
T).

Parameters:

i: [in & out] in: The items to be reduced. out: The reduced value.

acc: Accumulator used for reducing.

Exceptions:

InvalidArg : If n is pre-initialized at the time of first evaluation.

Notes:

This TLR is functionally similar to std::accumulate, but a seed value is not required as

it will not succeed if the input sequence is empty. Argument i is used both as input and

output simultaneously. Once all the values have been read from i, the result will be

produced in i. Thus TLR reduce can only be used to generate a result.

Examples:

range(j,1,10) >>= reduce(j, std::multiplies<int>()); // factorial of 10

reduce_of relation

template<class Cont, class BinFunc>

ReduceOf_r<..>

reduce_of(lref<Cont>& cont_, const lref<typename Cont::value_type>& r

 , BinFunc acc)

Declarative reading: Reducing values in container using accumulator acc yields r.

Template Parameters:

Cont: Must satisfy requirements of standard C++ containers [$23.1]

BinFunc: A binary function pointer/object which returns Cont::value_type and

accepts arguments (Cont::value_type, Cont::value_type).

Parameters:

cont_ : [in] Container whose values are to be reduced.

r: [in/out] The reduced value.

Exceptions:

InvalidDeref : If cont_ is not initialized at the time of evaluation.

Notes:

This relation is functionally similar to std::accumulate, but a seed value is not required

as it will not succeed if cont_ is empty. This relation may be used in generate mode (by

leaving r uninitialized) or in test mode (by initializing r).

80

sum TLR

template<class T>

Reduce_tlr<..> sum(lref<T>& i)

Declarative reading: Sum of i.

Template Parameters:

T: Type of the values to be summed. operator + should be for type T with return type T.

Parameters:

i: [in & out] in: The items to be summed. out: The sum.

Exceptions:

InvalidArg : If i is pre-initialized at the time of first evaluation.

Notes:

This TLR invokes reduce using accumulator std::plus<T>().

Examples:

 int nums[] = { 1, 2, 3, 4, 5 };

 relation r = item(i,nums,nums+5) >>= sum(i);

 r();

 cout << *i; // prints 15

sum_of relation

template<class Cont>

ReduceOf_r<..>

sum_of(lref<Cont>& cont_, const lref<typename Cont::value_type>& s)

Declarative reading: Sum of values in container s.

Template Parameters:

Cont: Must satisfy requirements of standard C++ containers [$23.1].

Cont::value_type must support operator +.

Parameters:

cont_ : [in] Container whose values are to be summed.

s: [in/out] The sum.

Exceptions:

InvalidDeref : If cont_ is not initialized at the time of evaluation.

Notes:

This relation invokes reduce_of using accumulator std::plus<Cont::value_type>().

81

size_of relation

template<typename Cont>

Size_r<..> size_of(lref<Cont>& cont_

 , lref<typename Cont::size_type> sz)

Declarative reading: Size of container cont_ is sz.

Template Parameters:

Cont : Must satisfy requirements of standard C++ containers [$23.1].

Parameters:

cont_ : [in] Container whose size is to be determined.

sz : [in/out] Size of cont_.

Exceptions:

InvalidDeref : If cont_ is not initialized at the time of evaluation.

Notes:

Size of a cont_ is determined by invoking its size method.

Example:

 lref<vector<int>::size_type> sz;

 vector<int> v = vector<int> ();

 if(size(v, sz)());

 cout << *sz; // prints 0

Also refer to:

size_of, empty, not_empty.

6.4 Iteration

begin relation

template<typename Cont>

Begin_r<Cont> begin(lref<Cont>& cont_

 , lref<typename Cont::iterator> iter)

Declarative reading: Iterator pointing to the start of container cont_ is iter.

Template Parameters:

Cont : Must satisfy requirements of standard c++ containers [$23.1].

Parameters:

cont_ : [in] Container whose begin iterator is to be determined.

iter : [in/out] iterator to the beginning of cont_.

82

Exceptions:

InvalidDeref : If cont_ is not initialized at the time of evaluation.

dereference relation

relation dereference(lref<Itr> pointer_

 , lref<typename detail::Pointee<Itr>::result_type> pointee)

Declarative reading: Dereferencing pointer_ yields pointee.

Template Parameters:

Itr : A pointer, an iterators, a logic reference to a pointer or a logic reference to an

iterator.

Parameters:

pointer_ : [in] A pointer or iterator to be dereferenced.

pointee : [in/out] If pointee is initialized, it will be compared with the value obtained

by dereferencing pointer_ using operator==. If not initialized, pointee will be assigned

the value obtained by dereferencing pointer_.

Notes:

Relation dereference is used for obtaining an lref<T> from an lref<T*>. This is

useful when iterating over containers and streams or simply working with pointers in a

relational fashion.

Examples:
 // 1) dereferencing lref<int*> to obtain lref<int>.

 int three=3;

 lref<int*> lp3=&three;

 lref<int> l;

 relation r = dereference(lp3,l) && write(l);

 r(); // prints 3

 // 2) dereferencing raw pointers.

 int two=2;

 int* pi= &two;

 lref<int> li;

 relation r = dereference(pi, li) && write(li);

 r(); // prints "2"

 // 3) dereferencing logic references to iterators.

 lref<vector<int> > lv = vector<int>(); lv->push_back(4);

 lref<vector<int>::iterator> lItr = lv->begin();

 // check if 1st element in lv 4

 relation r = begin(lv, lItr) && dereference(lItr, 4);

 if(r())

 cout << "first element is 4";

83

end relation

template<typename Cont>

End_r<Cont> end(lref<Cont>& cont_, lref<typename Cont::iterator> iter)

Declarative reading: Iterator pointing to one past the end of container cont_ is iter.

Template Parameters:

Cont : Must satisfy requirements of standard C++ containers [$23.1].

Parameters:

cont_ : [in] Container whose begin iterator is to be determined.

iter : [in/out] points to (one past) the end of the elements in cont_. End iterator of

container is obtained by invoking its end()method.

Exceptions:

InvalidDeref : If cont_ is not initialized at the time of evaluation.

item relation

template<typename Itr>

Item_r<Itr> item(lref<typename detail::Pointee<Itr>::result_type> obj

 , Itr begin_, Itr end_)

template<typename Cont>

ItemCont_r<Cont> item(lref<typename Cont::value_type> obj

 , lref<Cont>& cont_)

template<class T>

ItemSet_r<std::set<T> >

item(lref<const typename std::set<T>::value_type> obj

 , lref<std::set<T> >& cont_)

template<class T>

ItemSet_r<std::multiset<T> >

item(lref<const typename std::multiset<T>::value_type> obj

 , lref<std::multiset<T> >& cont_)

Declarative reading: obj is an item in the sequence [begin, end) or the container

cont_.

Template Parameters:

Itr : Can be a pointer type, an input iterator type [$24.1.1], a logic reference to a

pointer, or a logic reference to an input iterator. If Itr is not a logic reference, it must

support dereferencing with operator *. Similarly, if Itr is a logic reference type, its

underlying type must support dereferencing with operator *. Cannot be a

const_iterator or a lref<const_iterator>.

Cont : Satisfies requirements of standard containers. Cannot be const qualified.

T : Type if the item being enumerated.

84

Parameters:

obj: [in/out] obj is an item in the sequence bounded by iterators begin_ and end_.

begin_: [in] points to the beginning of a sequence. It must precede or be equal to end_.

end_: [in] points to (one past) the end of a sequence.

cont_: [in] A standard container whose items are of interest.

Exceptions:

InvalidDeref : If begin_ or end_ is not uninitialized at the time of evaluation.

Notes:

When obj is initialized, item will succeed once for each occurrence of obj in the

sequence.

Relation item is typically useful for iterating over sequences in a relational fashion. Due

to the bidirectional nature of parameter obj, it also doubles up as a facility for testing the

presence of a value in a sequence. Since item works with standard iterators and pointers

(or logic references to pointers and iterators) it enables easier interaction with traditional

C++ code that deal with containers, streams and arrays.

In test mode, when the argument is a sequential container such as std::list and

std::vector or an iterator pair, the lookup is a O(N) operation. The overloads that

accept std::set and std::multiset enable faster O(log N) lookups. For containers

such as hash tables and search trees that provide fast lookups but are not part of the

standard C++ library, consider using item_set or item_map.

Also note that parameter i is of type lref<const T> in the overloads accepting

std::set<T> and std::multiset<T> . This disables modification of set items via i.

Currently, item does not accept a const container or a const_iterator pair as

arguments. We hope to address this limitation in the future.

Example:

 // 1) print all values in an array

 int arr[] = {1,2,3,4};

 lref<int> val;

 lref<int*> b = arr+0, e = arr+4;

 relation r = item(obj, b, e);

 while(r())

 cout << * val << " "; // prints "1 2 3 4 "

 // 2) Print all items in 1st array that are also part of 2nd array

 // (i.e intersection of two arrays – O(N2))

 int arr1[] = {1,2,3,4};

 int arr2[] = {6,3,7,1,9};

 lref<int> i;

 relation r2 = item(i, arr1+0, arr1+4) && item(i, arr2+0, arr2+5);

 while(r2())

 cout << *i << " "; // prints "1 3 "

 // 3) Faster intersection - O(N log N)

85

 int arr1[] = {..};

 std::set<int> s2 = ..;

 lref<int> i;

 relation r2 = item(i, arr1+0, arr1+4) && item(i, s2);

In the second example the first call to item is responsible for generating a value for i

from arr1 and the second call to item then tests if that value is part of arr2.

Also refer to:

item_set, item_map, ritem

item_map relation

template<class MapT>

ItemMap_r<MapT>

item_map(lref<const typename MapT::key_type> key

 , lref<typename MapT::mapped_type> val, lref<MapT>& cont_)

Declarative reading: The key is associated with val in the map cont_.

Template Parameters:

MapT : A map like container. That is, it satisfies requirements of standard associative

containers [23.1.2] and MapT::value_type is std::pair<MapT::key_type ,

MapT::mapped_type>. E.g. std::map and std::multimap.

Parameters:

key: [in/out] One of the keys in the map.

val: [in/out] An item associated with key.

cont_: [in] A map like container whose items are of interest.

Exceptions:

InvalidDeref : If cont_ is not uninitialized at the time of evaluation.

Notes:

Map like containers are associative containers such as std::map, std::multimap and

tr1::unordered_map which store key-value pairs and provide fast lookups on the keys.

item_map can be used to lookup keys and/or values in “map like” containers.

item_map exhibits the following behaviors depending on the state of key and val

arguments:

- key and val specified: Succeeds once for every occurrence of the specified value

among values associated with the key.

- Only key specified: Succeeds once for every value associated with the key.

- Only val specified: Enumerates all key-value pairs in the container and succeeds

once for every pair in which the value matches the specified val.

- key and val unspecified: Succeeds once for every key-value pair in cont_ .

86

Example:

 lref<multimap<char,int> > mm = .. ;

 // Lookup key-value pair

 item_map('z', 400, mm);

 // Enumerate all key-value pairs

 lref<const char> k;

 lref<int> v;

 item_map(k, v, mm);

 // Enumerate all values for a specific key

 lref<int> v;

 relation r = item_map('z',v,mm);

 // Enumerate all keys having with which the value 100 is associated

 lref<const char> k;

 relation r = item_map(k,100,mm);

Here item generates values for i which are then looked up in the hashed set using

item_set.

Also refer to:

item, item_set, ritem

item_set relation

template<class SetT>

ItemSet_r<SetT>

item_set(lref<const typename SetT::value_type> obj, lref<SetT>& cont_)

Declarative reading: obj is an item in the set cont_.

Template Parameters:

SetT : A set like container. That is, it satisfies requirements of standard associative

containers [23.1.2] and SetT::key_type is the same as SetT::value_type. E.g.

std::set.

Parameters:

obj: [in/out] obj is an item in the set.

cont_: [in] A set like container whose items are of interest.

Exceptions:

InvalidDeref : If cont_ is not uninitialized at the time of evaluation.

Notes:

87

When obj is initialized, item_set will succeed once for each occurrence of obj in

cont_. Relation item_set is provided for use with “set like” containers that provide fast

lookups but are not part of the C++ standard library. Set like containers are associative

containers where the key type and value type are the same. For associative containers

where the key type and value type is different, item_map should be used.

In some cases (e.g. when dealing with standard and non-standard containers in generic

relations) it may be useful to have custom overloads for relation item that accept non-

standard containers and merely forward the calls to item_set.

Currently, item_set does not accept a const container as argument. We hope to address

this limitation in the future.

Example:

 // Fast intersection – using hashed set - O(N)

 int arr1[] = {..};

 tr1::unordered_set<int> hashed_set = .. ;

 lref<int> i;

 relation r2 = item(i, arr1+0, arr1+4) && item_set(i, hashed_set);

Here item generates values for i which are then looked up in the hashed set using

item_set.

Also refer to:

item, item_map, ritem

next relation

template<typename T>

relation next(lref<T> curr_, lref<T> n)

template<typename T>

relation next(T curr_, lref<T> n)

template<typename T>

relation next(T curr_, const T& n)

Declarative reading: Next of curr_ is n.

Template Parameters:

T : Must support prefix increment operator.

Parameters:

curr_ : [in] value preceding n. This must be initialized at the time of evaluation.

n : [in/out] value following curr_. i.e ++curr_.

Exceptions:

InvalidDeref : If curr_ is a lref and is not initialized at the time of evaluation.

88

Notes:

Relation next is useful for incrementing both values and iterators. The second and third

overloaded versions provide slightly optimized implementation for cases when one or

both of the arguments is not a logic reference type. More importantly they simplify

syntax for user code by not requiring explicit specification of the template parameter

when arguments involve a mix of types lref<T> and T. Relation next generates only one

solution.

Examples:

The following relation generates one item in i at a time in the sequence bounded by

iterators b_ and e_. By initializing argument i to a value, this relation could be instead

used to test if a particular value is present in the sequence.

relation itemsIn(lref<int*> b_, lref<int*> e_, lref<int> i) {

 lref<int*> n;

 return eq(b_,e_) // stop if b_==e_

 ^ (dereference(b_,i) || next(b_,n) && recurse(&itemsIn, n, e_, i));

}

For a more generalized version of itemsIn refer to documentation of relation item.

Also refer to:
prev, inc, dec, head, tail, item

prev relation

template<typename T>

relation prev(lref<T> curr_, lref<T> p)

template<typename T>

relation prev(T curr_, lref<T> p)

template<typename T>

relation prev(T curr_, const T& p)

Declarative reading: Previous of curr_ is p.

Template Parameters:

T : Must support prefix decrement operator.

Parameters:

curr_ : [in] value succeeding p. This must be initialized at the time of evaluation.

p : [in/out] value preceding curr_. i.e –-curr_.

Exceptions:

InvalidDeref : If curr_ is a lref and is not initialized at the time of evaluation.

89

Notes:

Relation prev is useful for decrementing both values and bidirectional iterators. The

second and third overloaded versions provide slightly optimized implementation for cases

when one or both of the arguments is not a logic reference type. More importantly they

simplify syntax for user code by not requiring explicit specification of the template

parameter when arguments involve a mix of types lref<T> and T. Relation prev

generates only one solution.

Also refer to:
next, inc, dec, head, tail, item

ritem relation

template<typename Cont>

ItemRCont_r<Cont> ritem(lref<typename Cont::value_type> obj

 , lref<Cont>& cont_)

Declarative reading: obj is an item in the container cont_.

Template Parameters:

Cont : Satisfies requirements of standard reversible containers [$23.1]. Cannot be const

qualified.

Parameters:

obj: [in/out] obj is an item in the sequence bounded by iterators begin_ and end_.

cont_: [in] A standard container whose items are of interest.

Exceptions:

InvalidDeref : If begin_ or end_ is not uninitialized at the time of evaluation.

Notes:

When obj is not initialized, ritem will generate all values in the container in reverse

order using the iterators provided by the container’s rbegin() and rend() methods.

When obj is initialized, ritem will succeed once for each occurrence of obj in the

sequence.

Currently, ritem does not accept a const container as argument. We hope to address this

limitation in the future.

Example:

 // 1) print all values in a vector in reverse

 int arr[] = {1,2,3,4};

 lref<vector<int> > v = vector<int>(arr, arr+4);

 lref<int> i;

 relation r = ritem(i, v);

 while(r())

90

 cout << *i << " "; // prints "4 3 2 1 "

Also refer to:
item, reverse

91

6.5 Predicates

Boolean relation

class Boolean : public Coroutine {

 explicit Boolean(bool value);

 bool operator ()(void);

};

Brief Description: First evaluation succeeds only if return value is true, and all

subsequent evaluations fail (i.e. return false).

Parameters:

value: The (true/false) value to be returned on first evaluation of Boolean.

Returns:

If value is true, returns true on first evaluation and false otherwise. All subsequent

evaluations return false.

Exceptions:

None.

Notes: This relation is useful for creating simple predicate relations from boolean values

or expressions that can be eagerly evaluated.

Example:
 int num;

 cin >> num;

 relation r = (Boolean(num<5) && write("value < 5"))

 ^ write("value >= 5");

Also refer to:

True, False.

False relation

struct False {

 bool operator ()(void) { return false; }

};

Brief Description: Always fails.

Returns:

Always returns false.

Exceptions:

None.

92

Also refer to:

Boolean, True.

True relation

class True : public Coroutine {

True(); // succeed once

explicit True(unsigned long n); // succeed once „n‟ times

bool operator ()(void);

};

Brief Description: Succeed n times.

Returns:

First evaluation returns true, and all subsequent evaluations return false.

Exceptions:

None.

Also refer to:

Boolean, False.

predicate relation

// overloads for function objects

template<typename Pred>

Predicate0_r<Pred>

predicate(Pred pred)

template<typename Pred, typename A1>

Predicate1_r<Pred,A1>

predicate(Pred pred, const A1& a1__)

template<typename Pred, typename A1, typename A2>

Predicate2_r<Pred,A1,A2>

predicate(Pred pred, const A1& a1_, const A2& a2_)

.. additional overloads supporting upto 6 arguments to f

// overloads for function pointers

template<typename R>

Predicate0_r<R(*)(void)>

predicate(R(* pred)(void))

template<typename R, typename P1, typename A1>

Predicate1_r<R(*)(P1),A1>

predicate(R(* pred)(P1), const A1& a1_)

template<typename R, typename P1, typename P2, typename A1

 , typename A2>

Predicate2_r<R(*)(P1,P2),A1,A2>

93

predicate(R(* pred)(P1,P2), const A1& a1_, const A2& a2_)

.. additional overloads supporting upto 6 arguments to f

Declarative reading: pred(a1,..,aN) is true.

Template Parameters:

Pred : A function or function object that takes up to 6 arguments. Return type must be

bool or any other type convertible to bool.

R: Return type of the function pointer. Must be bool or a type convertible to bool.

Pn : Type of n
th

 parameter of function pointer. Can be a POT or lref.

An : Type of the n
th

 argument to being passed to the function or function object. Can be a

POT or lref whose effective type is convertible to the corresponding parameter type in

Pred.

Parameters:

pred : Function or function object which returns bool and takes up to 6 parameters.

aN : [in] Argument (POT or lref) at position N whose effective value will be passed to

pred.

Notes: Relation predicate is an adaptor relation used for treating regular functions with

return type bool, as relations. It evaluates successfully, at most once, if pred returns

true. ILEs are often used as arguments to predicate to create simple anonymous

relations directly inline, thus reducing the need to declare named predicate functions. For

working with predicate member functions, use predicate_mf.

Examples:

Searching for even numbers in an array by adapting the predicate function isEven.

bool isEven(int num) {

 return num%2 == 0;

}

int nums[] = {4,3,9,8,15};

relation evenNums = item(n, nums+0, nums+5) && predicate(isEven,n);

while(evenNums())

 cout << *n << " ";

Searching for even numbers with ILEs.
int nums[] = {4,3,9,8,15};

relation evenNums = item(n, nums+0, nums+5) && predicate(n%2==0);

while(evenNums())

 cout << *n << " ";

Also refer to:

predicate_mf.

predicate_mf relation

94

// Support for non-const member functions (with upto 6 arguments)

template<typename R, typename Obj, typename Obj2>

MemPredicate0_r<Obj,R(Obj::*)(void)>

predicate_mf(lref<Obj>& obj_, R(Obj2::* mempred)(void))

template<typename R, typename P1, typename Obj, typename Obj2

 , typename A1>

MemPredicate1_r<Obj,R(Obj::*)(P1),A1>

predicate_mf(lref<Obj>& obj_, R(Obj2::* mempred)(P1), const A1& arg1)

template<typename R, typename P1, typename P2, typename Obj

 , typename Obj2, typename A1, typename A2>

MemPredicate2_r<Obj,R(Obj::*)(P1,P2),A1,A2>

predicate_mf(lref<Obj>& obj_, R(Obj2::* mempred)(P1,P2), const A1& arg1

 , const A2& arg2)

.. additional overloads supporting upto 6 arguments to mf

// Support for const member functions (with upto 6 arguments)

template<typename R, typename Obj, typename Obj2>

MemPredicate0_r<Obj,R(Obj::*)(void) const>

predicate_mf(lref<Obj>& obj_, R(Obj2::* mempred)(void) const)

template<typename R, typename P1, typename Obj, typename Obj2

 , typename A1>

MemPredicate1_r<Obj,R(Obj::*)(P1) const,A1>

predicate_mf(lref<Obj>& obj_, R(Obj2::* mempred)(P1) const

 , const A1& arg1)

template<typename R, typename P1, typename P2, typename Obj

 , typename Obj2, typename A1, typename A2>

MemPredicate2_r<Obj,R(Obj::*)(P1,P2) const,A1,A2>

predicate_mf(lref<Obj>& obj_, R(Obj2::* mempred)(P1,P2) const

 , const A1& arg1, const A2& arg2)

.. additional overloads supporting upto 6 arguments to mf

Declarative reading: obj_.pred(a1,..,aN) is true.

Template Parameters:

Obj : A type whose member function is to be treated as a relation.

Obj2 : Same as Obj or a public base class of Obj.

R: Return type of the member function pointer. Must be bool or a type convertible to

bool.

Pn : Type of n
th

 parameter of member function. Can be a POT or lref.

An : Type of the n
th

 argument to being passed. Can be a POT or lref whose effective type

is convertible to the corresponding Pn.

Parameters:

95

obj_ : [in] Object on which member predicate function pointed to by mpred will be

invoked. This argument must be a logic reference. This restriction ensures methods are

invoked on the actual argument and not on a copy of obj_.

mempred : Address of predicate member function to be treated as a relation.

argN : [in] The N
th

 argument to be passed to mempred. Effective value of argN is passed

to mpred.

Notes: Relation predicate_mf is an adaptor relation used for treating predicate member

functions (having up to 6 parameters) as relations. It evaluates successfully, at most once,

if pred returns true. For working with non-member predicate functions, use

predicate_f. The overloads are designed to eliminate the need for a static_cast on

mempred even in the face of overload ambiguities. Refer to examples in eval_mf for

more details on this.

Examples:

Counting empty lines in a file.

lref<list<string> > lines = readFromFile(..);

lref<string> line;

relation r = item(line, lines) && predicate_mf(line,&string::empty);

int count=0;

while(r())

 ++count;

cout << count << " empty lines found in file.";

Also refer to:

predicate_f, predicate_mem, eq_mf.

predicate_mem relation

template<typename Obj, typename Obj2, typename MemberT>

Predicate_mem_r<Obj, MemberT>

predicate_mem(lref<Obj>& obj_, MemberT Obj2::* mem)

Declarative reading: (*obj_).*mem is true.

Template Parameters:

Obj : Any type which whose member variable is to be accessed.

Obj2 : Same as Obj or a public base class of Obj.

MemberT : Type of the data member to be accessed. This is should be either bool or a

type convertible to bool.

Parameters:

obj_ : [in] The object whose data member is to be accessed. This argument must be a

logic reference. This restriction ensures methods are invoked on the actual argument and

not on a copy of obj_.

mem : Pointer to a member variable.

96

Notes:

Relation predicate_mem is used for checking the value of a boolean member variable.

The relation succceds if the member variable’s value is true (or convertible to true).

This relation succeeds at most once.

6.6 Collection

permutation & permutation_cmp relations

template<class InItr, class RandSeq>

Permutation_r<InItr,RandSeq>

permutation(const InItr& begin_i, const InItr& end_i

 , lref<RandSeq>& p_seq)

template<class Cont, class RandSeq>

relation permutation(lref<Cont>& seq_i, lref<RandSeq>& p_seq)

template<class InItr, class RandSeq, class Cmp>

Permutation_r<InItr,RandSeq,Cmp>

permutation_cmp(const InItr& begin_i, const InItr& end_i

 , lref<RandSeq>& p_seq, Cmp order)

template<class Cont, class RandSeq, class Cmp>

relation permutation_cmp(lref<Cont>& seq_i, lref<RandSeq>& p_seq

 , Cmp cmp)

Declarative reading: Permutation of input sequence (seq_i or [begin_i,end_i)) is

p_seq.

Template Parameters:

Cont: Must satisfy requirements of standard C++ containers [$23.1]. Its begin and end

methods should return iterators that satisfy the RandomAccessIterator requirements

[$24.1.5]. operator < should be defined over Cont::value_type unless a comparison

predicate is specified. Currently, type Cont cannot be const qualified.

RandSeq: Must satisfy requirements of standard C++ sequences [$23.1.1]. The begin and

end methods should return iterators that satisfy the RandomAccessIterator requirements

[$24.1.5]. For e.g. std::vector< >.

FwdItr: A pointer, an iterator , a logic reference to a pointer or a logic reference to an

iterator. Iterator should satisfy the ForwardIterator requirements [$24.1.3].

Cmp: A binary function or function object to compare objects of type

RandSeq::value_type. Return type must be bool or convertible to bool. E.g.
std:less<>.

Parameters:

seq_i : [in] The sequence for which permutations need to be generated (or tested).

97

begin_i : [in] Begin iterator of input sequence for which permutations need to be

generated (or tested).

end_i : [in] End iterator of input sequence for which permutations need to be generated

(or tested).

p_seq : [in, out] Permutation of input sequence.

cmp : User-defined function object defining the criterion to be satisfied by successive

elements in the permutation.

Notes: If p_seq is not initialized, all permutations of seq_i will be generated in p_seq. If

p_seq is initialized, the relation succeeds if p_seq and seq_i are of the same and each

element in seq_i also exists in p_seq. seq_i is not modified in anyway.

These relations use std::next_permutation and std::prev_permutation to

generate the permutations. First all the next permutations are generated, followed by the

original input sequence, followed by all the previous permutations or the original

sequence.

Relation permutation_cmp is functionally identical to relation permutation except that

it explicitly requires the ordering constraint. Relation permutation uses std::less<

RandSeq::value_type> as the default ordering constraint. Due to overload resolution

conflicts, relation permutation_cmp does not use the name as permutation.

Example:

//1) Test for a valid permutation

lref<string> s = "hello", ps="olleh";

if(permute(s,ps)())

 cout << *ps << " is a permutation of " << *s;

//2) Generate all permutations

lref<string> s = "hello", ps;

relation p = permute(s,ps);

while(p())

 cout << *ps << "\n";

//3) Generate permutations using std::greater<> as the ordering

lref<string> s="bac", ps;

relation r = permutation_cmp(s, ps, std::greater<char>()) ;

while(r())

 cout << *ps << " "; // acb abc bac bca cab cba

Also refer to:

shuffle.

shuffle relation

template<class Cont, class RandSeq>

relation shuffle(lref<Cont>& seq_i, const lref<Seq>& shuf)

98

template<class InItr, class RandSeq>

Shuffle_r<InItr,Seq>

shuffle(const InItr& begin_i, const InItr& end_i

 , const lref<Seq>& shuf);

Declarative reading: shuf is a random shuffle of the input sequence seq_i.

Template Parameters:

Cont: Must satisfy requirements of standard C++ containers [$23.1]. The begin and end

methods should return iterators that satisfy the InputIterator requirements [$24.1.1].

RandSeq: Must satisfy requirements of standard C++ sequences [$23.1.1]. The begin and

end methods should return iterators that satisfy the RandomAccessIterator requirements

[$24.1.5]. For e.g. std::vector< >.

InItr: A pointer, an iterator , a logic reference to a pointer or a logic reference to an

iterator. Iterator should satisfy the InputIterator requirements [$24.1.1].

Parameters:

seq_i : [in] The values to be shuffled.

begin_i, end_i : [in] Iterators to the sequence to be shuffled.

shuf : [in, out] Shuffled seq_i.

Notes: If shuf is not initialized, all permutations of seq_i will be generated in shuf. If

shuf is initialized, the relation succeeds if shuf and seq_i are of the same size and each

element in seq_i also exists in shuf. Order of elements is ignored for comparison. If

input sequence is empty, shuffle always fails. In generate mode, shuffle indefinitely

produces randomized versions of the input sequence uses std::random_shuffle. seq_i

is not modified in anyway.

Also refer to:

permute.

6.7 Other

dec relation

template<typename T>

Dec_r<T> dec(lref<T>& value_);

Declarative reading: value_ is decremented.

Template Parameters:

99

T : It may be a logic reference type or a regular type. If T is a logic reference type then its

underlying type (i.e. T::result_type) must support prefix operator --. If T is not a

logic reference type, it must support the prefix operator --.

Parameters:

value_ : [in & out] A logic reference whose value is to be decremented. value_ does

not have to be initialized when dec is invoked but must be initialized at the time when

dec is evaluated.

Notes: This relation evaluates successfully only once. On successful evaluation value_

will be decremented. Any further attempt to evaluate this relation will restore the original

value into value_.

Example:

lref<int> i;

relation r = dec(i); // 'i' need not be initialized at this point

i=2; // but must be initialized before dec is evaluated

while(r())

 cout << *i << " "; // prints 1

cout << *i << " "; // prints 2

relation r2 = dec(3); // Compiler error. Argument must be a lref

Here, r is evaluated twice by the while loop. First evaluation attempt causes i to be

decremented and evaluation succeeds. The second attempt at evaluation fails and the

original value 2 is restored into i.

Also refer to:

inc, next, prev.

defined relation

template<typename T>

Defined_r<T> defined(const lref<T>& r_)

Declarative reading: r_ is initialized with a value.

Template Parameters:

T: Any type.

Parameters:

r_ : [in] The logic reference to be tested for initialization.

Notes:

defined is a relational wrapper on the lref::defined method. Leaving r_ uninitialized

does not lead to generation of values for it. This relation merely invokes the defined

100

method on r_ when evaluated the first time. If defined returns true then evaluation

succeeds, and fails otherwise. All subsequent evaluations will be unsuccessful.

Example:
lref<int> li=2;

//if li is initialized print its value

//otherwise print "not initialized"

relation r = (defined(li) && write(li))

 ^ write("not initialized") ;

r();

Also refer to:

defined.

inc relation

template<typename T>

Inc_r<T> inc(lref<T>& value_);

Declarative reading: value_ is incremented.

Template Parameters:

T : It may be a logic reference type or a regular type. If T is a logic reference type then its

underlying type (i.e. T::result_type) must support prefix ++ operator. If T is not a logic

reference type, it must support the prefix ++ operator.

Parameters:

value_ : [in & out] A logic reference whose value is to be incremented. value_ does not

have to be initialized when inc is invoked but must be initialized at the time when inc is

evaluated.

Notes: This relation evaluates successfully only once. On successful evaluation value_

will be incremented. Any further attempt to evaluate this relation will restore the original

value into value_.

Example:

lref<int> i;

relation r = inc(i); // 'i' need not be initialized at this point

i=2; // but must be initialized before inc is evaluated

while(r())

 cout << *i << " "; // prints 3

cout << *i << " "; // prints 2

relation r2 = inc(3); // Compiler Error. Argument must be a lref

Here, inc(i) is evaluated twice by the while loop. First evaluation attempt causes i to be

incremented and evaluation succeeds. The second attempt restores the original value 2

into i and evaluation fails causing the while loop to terminate.

101

Also refer to:

dec, next, prev.

defined relation

template<typename T>

Defined_r<T> defined(const lref<T>& r_)

Declarative reading: r_ is initialized with a value.

Template Parameters:

T: Any type.

Parameters:

r_ : [in] The logic reference to be tested for initialization.

Notes:

defined is a relational wrapper on the lref::defined method. Leaving r_ uninitialized

does not lead to generation of values for it. This relation merely invokes the defined

method on r_ when evaluated the first time. If defined returns true then evaluation

succeeds, and fails otherwise. All subsequent evaluations will be unsuccessful.

Example:
lref<int> li=2;

//If li is initialized print its value

// otherwise print "not initialized"

relation r = (defined(li) && write(li))

 ^ write("not initialized") ;

r();

Also refer to:

defined.

eval relation

// overloads for function objects

template<typename Func, typename A1>

Eval_r1<Func,A1>

eval(Func f, const A1& a1_)

template<typename Func, typename A1, typename A2>

Eval_r2<Func,A1,A2>

eval(Func f, const A1& a1_, const A2& a2_)

.. additional overloads supporting upto 6 arguments to f

// overloads for function pointers

102

template<typename R>

Eval_r0<R(*)(void)>

eval(R(* f)(void))

template<typename R, typename P1, typename A1>

Eval_r1<R(*)(P1),A1>

eval(R(* f)(P1), const A1& a1_)

template<typename R, typename P1, typename P2, typename A1

 , typename A2>

Eval_r2<R(*)(P1,P2), A1,A2>

eval(R(* f)(P1,P2), const A1& a1_, const A2& a2_)

.. additional overloads supporting upto 6 arguments to f

Declarative reading: Evaluate the function or function object f.

Template Parameters:

Func : A function object type that takes up to 6 arguments. Func must define a member

typedef result_type indicating its result type.

R: Return type of the function pointer.

Pn: Type of the N
th

 parameter of function pointer. Can be an lref or POT. AN should be

either same as or convertible to the corresponding Pn.

An : Type of the N
th

 argument to being passed. Can be a POT or lref whose effective type

is convertible to the corresponding parameter type in Func.

Parameters:

f : A function pointer or function object that is to be invoked when the relation is

evaluated.

aN_ : [in] The N
th

 argument to be passed to f. Effective value of aN is passed to f. It can

be an lref or POT.

Exceptions:

InvalidDeref : If any argument aN is an lref and is not initialized at the time of

evaluation.

Any exception thrown by f.

Notes: This relation can be used to execute imperative tasks, defined as a regular

function of function object, during the evaluation of relations. Functions and function

objects with up to 6 arguments are supported. Note that any side effects induced by f will

not be undone during backtracking. Hence eval should be used with care, ensuring that it

does not interfere with the correct evaluation of other relations by modifying objects that

are shared with other relations. eval always succeeds once. Note that the value returned

(if any) by f is not accessible. Consider using eq_f if access to return value is required.

Example:

//1) Print array items using eval

103

void print(int x) {

 cout << x << " ";

}

lref<int> x;

int a[] = {1, 2,3};

relation r = item(x,a,a+3) && eval(print,x);

while(r());

//2) Using an ILE instead of print()

relation r2 = item(x,a,a+3) && eval(ref(cout)<<x);

while(r());

The signature of eval_f is designed to eliminate the need for a static_cast on the f

argument in user code, even in the presence of overload ambiguities. For example

consider using eval_f on the following type with a function having two overloads

differing in arity (i.e. number of parameters).

int add(int i, int j) {

 return i+j;

}

int add(int i, int j, int k) {

 return i+j+k;

}

// messy static_cast works but not needed

eval_f(static_cast<int(*)(int,int,int)>(add), 1, 2, 3)();

// equivalent simpler syntax

eval_f(add, 1, 2, 3)();

This more direct syntax works when the overloads differ in arity. When the overloads

have the same arity and differ in the parameter types we can still avoid a static_cast by

specifying only the return type and parameter types of the member function as follows.

int add(int i, int j) {

 return i+j;

}

double add(double i, double j) {

 return i+j;

}

// messy static_cast works but not needed

eval_f(static_cast<int(*)(int,int)>(add), 1, 2)();

// equivalent simpler syntax

eval_f<int,int,int>(add, 1, 2)();

Also refer to:

eval_mf, predicate, predicate_mf, eq_f, eq_mf.

eval_mf relation

104

// Overloads for non-const member functions

template<typename R, typename Obj, typename Obj2>

Eval_mf_r0<Obj,R(Obj::*)(void)>

eval_mf(lref<Obj>& obj_, R(Obj2::*mf)(void))

template<typename R, typename P1, typename Obj, typename Obj2, typename

A1>

Eval_mf_r1<Obj,R(Obj::*)(P1),A1>

eval_mf(lref<Obj>& obj_, R(Obj2::* mf)(P1), const A1& a1_)

template<typename R, typename P1, typename P2, typename Obj

 , typename Obj2, typename A1, typename A2>

Eval_mf_r2<Obj,R(Obj::*)(P1,P2),A1,A2>

eval_mf(lref<Obj>& obj_, R(Obj2::* mf)(P1,P2), const A1& a1_

 , const A2& a2_)

.. additional overloads supporting upto 6 arguments to mf

// Overloads for const member functions

template<typename R, typename Obj, typename Obj2>

Eval_mf_r0<Obj,R(Obj::*)(void) const>

eval_mf(lref<Obj>& obj_, R(Obj::*mf)(void) const)

template<typename R, typename P1, typename Obj, typename A1>

Eval_mf_r1<Obj,R(Obj::*)(P1) const,A1>

eval_mf(lref<Obj>& obj_, R(Obj2::* mf)(P1) const, const A1& a1_)

template<typename R, typename P1, typename P2, typename Obj

 , typename Obj2, typename A1, typename A2>

Eval_mf_r2<Obj,R(Obj::*)(P1,P2) const,A1,A2>

eval_mf(lref<Obj>& obj_, R(Obj2::* mf)(P1,P2) const, const A1& a1_

 , const A2& a2_)

.. additional overloads supporting upto 6 arguments to mf

Declarative reading: Evaluate member function mf on object obj_.

Template Parameters:

Obj : A type whose member function is to be invoked.

Obj2 : Same as Obj or a public base class of Obj.

R : Return type of the member function.

Pn : Type of the n
th

 parameter of member function.

An : Type of the n
th

 argument to being passed. Can be a POT or lref whose effective type

is convertible to the corresponding parameter type Pn.

Parameters:

obj_ : [in] Object on which member function pointed to by mf will be invoked. This

argument must be a logic reference. This restriction ensures methods are invoked on the

actual argument and not on a copy of obj_.

mf : Pointer to a member function that is to be invoked when this relation is evaluated.

105

aN_ : [in] The N
th

 argument to be passed to mf. Effective value of aN is passed to mf.

Thus it can be an lref or POT.

Exceptions:

InvalidDeref : If any argument aN is a lref and is not initialized at the time of

evaluation.

Any exception thrown by mf.

Notes: This relation can be used to execute imperative tasks defined in member functions

during the evaluation of relations. Member functions with up to 6 arguments are

supported. Note that any side effects induced by mf will not be undone during

backtracking. Hence eval_mf should be used with care, ensuring that it does not interfere

with the correct evaluation of other relations by modifying objects that are shared with

other relations. eval_mf always succeeds once. Note that the value returned (if any) by

mf is not accessible. Consider using eq_mf if access to return value is required.

Examples:

The signature of eval_mf is designed to eliminate the need for a static_cast2 on the mf

argument in user code, even in the presence of overload ambiguities. For example

consider using eval_mf on the following type with a member function having two

overloads differing in arity (i.e. number of parameters).

struct calculator {

 int add(int i, int j) {

 return i+j;

 }

 int add(int i, int j, int k) {

 return i+j+k;

 }

};

lref<calculator> lc = calculator();

eval_mf(lc

 , static_cast<int(calculator::*)(int,int,int)>(&calculator::add)

 , 1, 2, 3)(); // messy static_cast works but not needed

eval_mf(lc, &calculator::add, 1, 2, 3)(); // equivalent simpler syntax

This more direct syntax works when the overloads differ in arity. When the overloads

have the same arity and differ in the parameter types we can still avoid a static_cast by

specifying only the return type and parameter types of the member function as follows.

struct calculator {

 int add(int i, int j) {

2
 Microsoft Visual C++ 2008 compiler needs explicit resolution when there exists a const and a non-const

overload for the member function. CodeGear C++ Builder 2007 compiler does not support this ability when

multiple overloads having the same arity exist for a member function. In this case all template arguments

must be specified in addition to explicitly resolving the particular member function overload.

106

 return i+j;

 }

 double add(double i, double j) {

 return i+j;

 }

};

lref<calculator> lc = calculator();

eval_mf(lc

 , static_cast<int(calculator::*)(int,int)>(&calculator::add)

 , 1, 2)(); // messy static_cast works but not needed

eval_mf<int,int,int>(lc, &calculator::add, 1, 2)();// simpler syntax

Relation eval_mf also safe to use with virtual and pure virtual functions.

struct Shape {

 virtual void draw()=0;

 virtual ~Shape(){}

};

struct Circle : public Shape {

 virtual void draw() { cout << "Circle"; }

};

lref<Shape> lc = Circle();

eval_mf(lc, &Shape::draw)();// calls Circle::draw()

Also refer to:

eval_f, predicate, predicate_mf, eq_f, eq_mf.

pause relation

template<typename T>

Pause_r<T> pause(lref<T>& msg)

template<typename T>

Pause_r<T> pause(const T& msg)

template<typename T>

Pause_r<const T*> pause(T* msg)

Declarative reading: Print msg to std::cout and wait for key press to continue.

Template Parameters:

T : Type of object to be printed. Should support the expression cout<<msg where msg is

of type T.

Parameters:

msg: [in] The object to be printed.

107

Exceptions:

InvalidDeref : If msg is an lref and not initialized at the time of evaluation.

Notes:

On evaluation, the relation prints the object to cout and then performs a

cin.ignore(),waiting for user to press the ENTER key. This relation is useful for

debugging purposes when one wishes to manually step through an execution.

Examples:
 // print each number in range and wait for keypress each time

 lref<int> li;

 relation r = range(li,0,3) && pause(li);

 while(r());

Also refer to:

pause_f.

pause_f relation

template<typename Func>

PauseF_r<..> pause_f(Func f)

Declarative reading: Print result of f()to std::cout and waits for key press to

continue.

Template Parameters:

Func : Function pointer or function object type taking no arguments. Should support the

expression cout<<f() where f is of type Func.

Parameters:

f: The function object or a pointer to function whose return value will be printed to

std::cout.

Exceptions:

Any exception thrown by f().

Notes:

On evaluation, the relation prints the result of f() to cout and then performs a

cin.ignore(), waiting for user to press the ENTER key. This relation is useful for

debugging purposes when one wishes to manually step through an execution.

Examples:
// print each name on a new line and wait for keypress each time

 lref<string> s;

 lref<vector<string> > names = ...;

 relation r = item(s, names) && pause_f(s + "\n");

 while(r());

108

Also refer to:

pause.

range relation

template<typename T>

Range_r<T> range(lref<T> val, T min_, T max_)

template<typename T>

Range_r<T> range(lref<T> val, lref<T> min_, lref<T> max_)

//with step

template<typename T>

Range_Step_r<T> range(lref<T> val, T min_, T max_, T step_)

template<typename T>

Range_Step_r<T> range(lref<T> val, lref<T> min_, lref<T> max_, lref<T>

step_)

Declarative reading: val is >= min_ and <= max_.

Template Parameters:

T : For overloads without the step_ parameter T must support <,== and prefix ++.

 For overloads with the step_ parameter T must support <, == and +=.

Parameters:

val: [in/out] val lies within the range (min_, max_).

min_: [in] Specifies an inclusive lower bound that is less than or equal to max_.

max_: [in] Specifies an inclusive upper bound that is greater than or equal to min_.

step_: [in] Specifies an increment to use (only) when generating values for val_. This is

not used when checking if val_ is in the inclusive range.

Exceptions:

InvalidDeref : If min_ or max_ is not initialized at the time of evaluation.

Notes:

If val is not initialized, relation range generates all values in the inclusive range

[min,max]. If val is initialized, range will succeed if val in the inclusive range [min,max].

If min_ is greater than max_ the range is considered empty and the relation will never

succeed.

Examples:
 // 1) print all values in the inclusive range [0,3]

 lref<int> li;

 relation r = range(li,0,3);

 while(r()) // prints "0 1 2 3 "

 cout << *li << " ";

109

 // 2) print alternate values in the inclusive range [0,10]

 lref<int> li;

 relation r = range(li,0,10,2);

 while(r()); // prints "0 2 4 6 8 10"

 cout << *li << " ";

 // 3) check if 12 is in the inclusive range [3,19]

 relation r = range(12,3,19);

 if(r())

 cout << "Yes.";

 // 4) empty range (i.e. min_ > max_)

 relation r = range(i,10,2);

Also refer to:

item, item_dec, eq_seq.

range_dec relation

template<typename T>

RangeDec_r<T> range_dec(lref<T> val, lref<T> max_, lref<T> min_)

template<typename T>

RangeDec_r<T> range_dec(lref<T> val, T max_, T min_)

//with step

template<typename T>

RangeDec_Step_r<T> range_dec(lref<T> val, lref<T> max_, lref<T> min_

 , lref<T> step_)

template<typename T>

RangeDec_Step_r<T> range_dec(lref<T> val, T max_, T min_, T step_)

Declarative reading: val is in the decreasing (inclusive) range [min_, max_].

Template Parameters:

T : For overloads without the step_ parameter T must support <,== and prefix --.

 For overloads with the step_ parameter T must support <, == and -=.

Parameters:

val: [in/out] val lies within the range (min_, max_).

min_: [in] Specifies an inclusive lower bound that is less than or equal to max_.

max_: [in] Specifies an inclusive upper bound that is greater than or equal to min_.

step_: [in] Specifies a decrement value to use (only) when generating values for val_.

This is not used when checking if val_ is in the inclusive range.

Exceptions:

InvalidDeref : If min_ or max_ is not initialized at the time of evaluation.

Notes:

This relation is similar to range, but generates the values in reverse order.

110

Note that the order of max_ and min_ arguments here is opposite as that of relation range.

Examples:
 // 1) print in reverse, all values in the range [0,3]

 lref<int> li;

 relation r = range_dec(li,3,0);

 while(r()) // prints "3 2 1 0 "

 cout << *li << " ";

 // 2) print in reverse, alternate values in the range [0,10]

 lref<int> li;

 relation r = range_dec(li,10,0,2);

 while(r()); // prints "10 8 6 4 2 0"

 cout << *li << " ";

 // 3) check if 12 is in the inclusive range [3,19]

 relation r = range_dec(12,19,3);

 if(r())

 cout << "Yes.";

 // 4) empty range (i.e. min_ > max_)

 relation r = range_dec(i,10,2);

Also refer to:

item, range.

repeat relation

template<typename T>

Repeat_r<T>

repeat(lref<T>& val_i, unsigned int count_i, lref<T>& r)

template<typename T>

Repeat_r<T> repeat(T val_i, unsigned int count_i, lref<T>& r)

Declarative reading: r_ is not initialized with a value.

Template Parameters:

T : Any type that satisfies the requirements of lref.

Parameters:

val_i : [in] The value to be repeated.

count_i : [in] The number of times to repeat.

r : [out] Value of val_i will be repeated in r.

Notes:

repeat succeeds count_i times, each time producing the original value of val_i in r.

Assignment of

111

Note that the value of val_i is assigned to r only once on first evaluation of repeat.

Thus any changes to the value of val_i in between evaluations of repeat will not reflect

in r. Also r is not reassigned the original value of val_i on each evaluation. If r is

found to be already initialized on first evaluation, this value will be memorized prior to

being overwritten and on final evaluation of repeat this value will be restored into r.

Example:
// repeat „1‟ three times in j

lref<int> j;

int times=3;

relation r = repeat(1,times,j);

while(r())

 cout << s << " ";

unique relation

template<typename T>

Unique_r<T> unique(lref<T> item_)

Declarative reading: item_ has not been seen before.

Parameters:

item_ : [in] The value to be tested for uniqueness. item_ must be initialized at the time

of evaluation.

Notes:

Duplicate results are commonly observed in logic programming. Relation unique is

useful in filtering out duplicates from the results that are generated from other relations.

An evaluation of unique succeeds only if it has encountered the current value of item_

for the first time. Internally unique maintains a set of items of type T. Each time

evaluation is triggered, it consults this set to determine if item_ has been noticed before,

if not item_ is added to the set. Note that backtracking does not cause the relation to

forget which items have been observed before. Its semantics depends on this “memory”.

Exceptions:

InvalidDeref : If item_ is not initialized at the time of evaluation.

Example:

// print items in arr[] after filtering out duplicate ocurrences

int arr[] = {0, 1, 2, 3, 3, 2};

lref<int> i;

relation r = item(i, arr+0, arr+5) && unique(i);

while(r())

 cout << *i << " ";

unique_f relation

112

template<typename FuncObj>

Unique_f_r<FuncObj> unique_f(FuncObj f)

Declarative reading: Value returned by f() has not been seen before.

Template Parameters:

FuncObj : A function object that does not take any parameters. It must provide a member

typedef result_type stating the return type of its member operator()(void). This

must be a function object and cannot be a regular function type.

Parameters:

f : The function object whose return value has not been seen before.

Notes:

This relation is similar to relation unique except that its argument is a function object

whose return value is used to perform the uniqueness check. ILEs are often useful as

arguments to unique_f.

Exceptions:

Any exception thrown by f().

Example:

// if i is an item in arr1 and j is an item in arr2

// print all pairs of i and j such that i*j is unique

int arr1[] = {0, 1, 2, 3, 3, 2};

int arr2[] = {3, 2, 1, 6, 3, 1};

lref<int> i, j;

int expected=0;

relation r = item(i, arr1+0, arr1+5) && item(j, arr2+0, arr2+5)

 && unique_f(i*j);

while(r())

 cout << *i << " " << *j << "\n";

unique_mf relation

template<typename R, typename Obj, typename Obj2>

UniqueMf_r<R,R(Obj::*)(void), Obj>

unique_mf(lref<Obj>& obj_, R(Obj2::*mf)(void))

template<typename R, typename Obj, typename Obj2>

UniqueMf_r<R,R(Obj::*)(void) const, Obj>

unique_mf(lref<Obj>& obj_, R(Obj2::*mf)(void) const)

Declarative reading: Value returned by ((*obj_).*mf)() has not been seen before.

Template Parameters:

R : Return type of member function.

113

Obj : Type of the object on which the member function is to be invoked.

Obj2 : Same as Obj or a public base class of Obj.

Parameters:

obj_ : Lref to an object on which member function is to be invoked.

mf : Pointer to a member function on the object.

Notes:

This relation is similar to relation unique_f except that its argument is a member

function whose return value is used to perform the uniqueness check.

Exceptions:

InvalidDeref : If obj_ is not initialized at the time of evaluation.

Any exception thrown by mf().

Example:

// Filter based on string‟s length

string words[] = {"mary", "had", "a", "little", "lamb"};

lref<string> w;

relation r = item(w,words,words+5) && unique_mf(w,&string::length);

while(r())

 cout << *w << " "; // „lamb‟ will not be printed

unique_mem relation

template<class Obj, class Obj2, class MemberT>

UniqueMem_r<Obj, MemberT>

unique_mem(lref<Obj>& obj_, MemberT Obj2::* mem)

Declarative reading: (*obj_).*mem has not been seen before.

Template Parameters:

MemberT : Type of data member.

Obj : Type of the object whose the data member is to be accessed.

Obj2 : Same as Obj or a public base class of Obj.

Parameters:

obj_ : Lref to an object whose data member is to be accessed.

mem : Pointer to a data member on the obj_.

Notes:

This relation is similar to relation unique_mf except that its argument is a data member

whose value is used to perform the uniqueness check.

Exceptions:

InvalidDeref : If obj_ is not initialized at the time of evaluation.

114

Example:

struct person {

 string firstName, lastName;

 person (string firstName, string lastName)

 : firstName(firstName), lastName(lastName)

 { }

 bool operator==(const person& rhs) const {

 return (firstName==rhs.firstName) && (lastName==rhs.lastName);

 }

};

// Print unique last names

person people[] = { person("Roshan","Naik"), person("Runa","Naik")

 , person("Harry","Potter") };

lref<person> p;

relation r = item(p,people,people+3)&& unique_mem(p,&person::lastName);

while(r())

 cout << p->lastName << " ";

115

7 Take Left Relations (TLRs)

7.1 Introduction

Some operations that deal with a sequence of input values do not require full visibility of

the input sequence in order to start producing results. For example, to transform an input

sequence of numbers into a sequence of squares, as each number in the input sequence is

encountered the corresponding value in the output sequence can be generated. Other

operations such as sorting or reversing a sequence require a fuller view of the input

sequence before being able to produce any result(s). Take Left relations or TLRs are

designed to simply the specification and usage of relations that require a fuller view of

the input data.

As seen in section 3.2, under the covers, ordinary relations are just function objects that

take no arguments and return a bool. TLRs on the other hand, are function objects that

require a relation as argument and return a bool. Type relation_tlr provides the

same type erasure services for TLRs as relation does for regular relations.

Consider the following TLR that reverses the input sequence:

template<typename T>

relation_tlr reverse(lref<T>& val);

And the following usage that reverses the input sequence generated by range.

relation rng = range(i,1,5);

relation_tlr rev = reverse(i);

while(rev(rng))

 cout << *i << " "; // prints: 5 4 3 2 1

TLR reverse internally performs the following steps:

- On first evaluation in the while loop:

- Evaluates rng repeatedly till it fails.

- Each value generated by rng in i is internally stored in a vector.

- Makes i point to the last element in this vector and succeeds. Or fails if

vector is empty.

- On subsequent evaluations:

- Makes i point to the element prior to element that it currently points to

and succeeds. Or fails if there are no more elements.

The argument i to reverse at the time of invocation, serves two purposes

simultaneously. First, it makes the input sequence available to reverse. Second, it also

serves as an out parameter in which the results are generated by reverse.

The above usage of reverse TLR can be simplified using operator >>= as follows:

116

lref<int> i;

relation rev = range(i,1,5) >>= reverse(i);

while(rev())

 cout << *i << " "; // prints: 5 4 3 2 1

Operator >>= simplifies the task of passing a relation as an argument to the TLR. It also

converts the expression involving a TLR into an ordinary relation which can then be

further composed with other relations or TLRs:

relation rev = range(i,1,5) >>= reverse(i) >>= reverse(i);
while(rev())

 cout << *i << " "; // prints: 1 2 3 4 5

Since relations such as reverse take the relation to the left of >>= as an argument during

evaluation, they are referred to as a “Take Left Relations”
3
 or TLRs.

TLR related facilities in Castor are described in the sections below.

7.2 Core Support

This section covers the type relation_ltr and operator >>= which form the core

facilities that provide support for using TLRs.

relation_tlr class

Purpose: Any function object that returns bool and takes a relation as argument can be

assigned to this type.

Class Declaration:

class relation_tlr {

public:

 typedef bool result_type;

 // Concept : F supports method... bool F::operator()(relation&)

 template<class F>

 relation_tlr(F f);

 relation_tlr(const relation_tlr& rhs);

 relation_tlr& operator=(const relation_tlr& rhs);

 bool operator()(relation & r);

};

Notes: Operator >>= minimizes the need to explicitly use this type.

3
 For lack of a better name.

117

>>= operator (TakeLeft operator)

TakeLeft_r operator >>= (const relation& lhs, const relation_tlr& rhs)

Purpose: Simplifies syntax when using TLRs.

Example:

int ai[] = { 10,2,1,4,6,5,7,3,9,8 };

lref<int> j;

relation r = item(j,ai,ai+10) >>= order(j);

while(r())

 cout << *j << " "; // prints: 1 2 3 4 5 6 7 8 9 10

Notes: Operator >>= minimizes the need to explicitly use this type.

7.3 TLRs

This section covers the TLRs defined in Castor. All TLRs defined in Castor can be used

in generate mode only.

group_by TLR

template<class Item, class Sel, class K, class V>

GroupBy<..>

group_by(lref<Item>& i_, Sel keySelector, lref<group<K,V> >& g)

template<class Item, class Sel, class K, class V, class KCmp>

GroupBy<..>

group_by(lref<Item>& i_, Sel keySelector, lref<group<K,V> >& g

 , KCmp keyCmp)

// cascaded .then()

template<class SelN>

GroupBy<..>::then(SelN keySelectorN)

template<class SelN, class KCmpN>

GroupBy<..>::then(SelN keySelectorN, KCmpN keyCmpN)

// cascaded .item_order() – only once at the very end

template<class ICmp>

GroupBy<..>::item_order(ICmp itemCmp)

// -- supporting type –-

template<class Key, class Value>

struct group {

118

typedef Key key_type;

 typedef Value value_type;

 typedef ... iterator; // random access iterator

 typedef ... size_type;

 Key key;

 size_type size() const; // size of this group

 bool empty() const; // size()==0 ?

 bool operator==(const group& rhs) const;

// iteration support

 iterator begin() const;

 iterator end() const};

};

Declarative reading: i is grouped using keySelector into g.

Template Parameters:

Item: Type of the object to be grouped.

Sel: Unary function pointer or function object that takes argument of type Item and

returns type K.

K: Key type for top level grouping. This is same as the return type of Sel.

V: For single level grouping, this is same as Item. For nested grouping, it is the type of

the inner group.

KCmp: Function pointer or function object that takes two arguments of type K and returns

bool.

SelN: Type of key selector at level N of the grouping. SelN is a function pointer or

function object that which takes argument of type Item and has a return type is

convertible to the key type at grouping level N.

KCmpN: Type of key comparator at level N. KCmpN is a function pointer or function object

that takes two arguments of type KN and returns bool, where KN is the return type of

the corresponding SelN.

ICmp: Function pointer or function object that takes two arguments of type Item and

returns bool.

Parameters:

i : [in] The items to be grouped. Input sequence is first read from this argument. Next,

the groups are generated as output in argument g. i should not already be initialized

when group_by is evaluated first.

keySelector: Function object or function pointer to extract the key for each element.

keyCmp : Function object or function pointer to compare keys.

g: [out] A group of items having a common key of type K. Its type dictates the number of

levels in the grouping and the type of the key at each level. See Notes section below

for details.

keySelectorN: Function object or function pointer to extract the key for each element at

grouping level N.

keyCmpN : Comparator for ordering keys at grouping level N.

itemCmp: Comparator for ordering the objects (of type Item) in the inner most group.

119

Exceptions:

InvalidArg : If i or g is pre-initialized at the time of first evaluation.

Any exception thrown by the keySelector.

Any exception thrown by the comparator used for type Item.

Notes:

group_by allows grouping of objects based on specified criteria. There is no limit on the

number of levels of nested grouping. Every successful evaluation of group_by yields one

top level group along with all its subgroups. When the input sequence is empty or there

are no more groups to be generated, the relation fails.

Argument g’s type provides all the necessary type information for describing the nature

of the grouping. This information explicitly includes the type of the value being grouped

and the key at each level. It also implicitly includes the number of levels of grouping. For

instance if g is of type group<int,string>, it indicates a single level grouping of

string objects where the key is of type int. Similarly if g is of type group<int,

group<char, group<bool,string> > > , it indicates a three level nested grouping of

string objects where the keys are of type int, char and bool at grouping levels 1,2 and

3 respectively.

The key selector and an optional key comparator for each level are provided via cascaded

invocations of .then() as shown in the examples below.The number of cascaded

.then(..)invocations following a group_by(..)invocation should be exactly 1 less

than the total grouping levels. This is enforced at compile time. Thus for single level

grouping there will not be any .then() invocations. A four level grouping would have

three cascaded .then() invocations of the following nature: group_by(..).then(..

).then(..).then(..). Also the return types of the selectors should be compatible

with (i.e. convertible to) the corresponding key type as specified in g’s type.

The key selectors are used to split the objects into groups and subgroups. The key

comparators are used to order the keys at each level. By default, the keys are generated in

ascending order using std::less<> as the comparator.

The grouped objects are located in the inner most group level. By default, these objects

will not be in any order. This ordering can be overridden by providing a custom

comparator using a cascaded invocation of .item_order() at the end, after all the

.then() invocations, if any, have been specified. For example, in the case of a single

level grouping this would be of the nature: group_by(..).item_order(..) , and for a

three level grouping: group_by(..).then(..).then(..).item_order(..).

std::less<Item> and std::greater<Item> can be used to obtain ascending and

descending order

Examples:

char firstChar(const string& s) { return s[0]; }

120

size_t str_len(const string& s) { return s.size(); }

lref<vector<string> > nums =..; /* {"One","Two","Three","Four"

 , "Five","Six","Fifty"}; */

//1) Single level grouping: Group strings by first character

lref<string> n;

lref<group<char,string> > g; // type of each group

relation r = item(n,nums) >>= group_by(n, &firstChar, g);

while(r()) { // iterate over each group

 cout << "\n" << g->key<< ": ";

 lref<string> s;

 relation r2= item(s,g);

 while(r2()) { // enumerate values in this group

 cout << *s << " ";

 }

}

// Console Output

F: Four Five Fifty

O: One

S: Six

T: Two Three

//2) Two level grouping: First by firstChar() and then by str_len()

// Also ensure strings are in ascending order

lref<string> n;

lref<group<char,group<size_t,string> > > g;

relation r = item(n,nums) >>= group_by(n, firstChar, g)

 .then(str_len)

 .item_order(std::less<string>());

while(r()) { // iterate over outer groups

 cout << g->key;

 lref<group<size_t,string> > g2; // inner group

 relation subgroups = item(g2,g);

 while(subgroups()) {

 cout << "\n " << g2->key << " : ";

 writeAll(g2)(); // print all items in subgroup

 }

}

// Console Output:

F

 4 : Five, Four

 5 : Fifty

O

 3 : One

S

 3 : Six

T

 3 : Two

 5 : Three

121

Also refer to:

order, order_mem, order_mf

order TLR

template<typename T>

Order_tlr<..> order(lref<T>& obj);

template<typename T, typename Pred>

Order_tlr<..> order(lref<T>& obj, Pred cmp);

Declarative reading: obj is in sorted order.

Template Parameters:

T: Type of the objects to be sorted. T must support comparison using operator < unless a

custom predicate is specified.

Pred: Type of predicate used to compare two objects of type T. Pred should accept two

arguments of type T and return bool. Could be a function pointer or function object.

Parameters:

obj : [in & out] in: Values to be ordered. out: Ordered values.

obj should not already be initialized when order is evaluated first (see examples).

cmp : Comparator used to order the values.

Exceptions:

InvalidArg : If obj is pre-initialized at the time of first evaluation.

Any exception thrown by the comparator used for type T.

Notes:

This relation is used for producing a sequence of values in sorted order. Unless a

comparator is explicitly provided, default order is ascending and uses std::less<T> to

compare values. Order of sorting can be reversed by specifying std::greater<int> as

the comparator.

Examples:

// 1) sort ascending

int ai[] = { 10,2,1,4,6,5,7,3,9,8 };

lref<int> j;

relation r = item(j,ai,ai+10) >>= order(j);

while(r())

 cout << *j << " ";

// 2) sort descending : using a custom comparator

122

item(j,ai,ai+10) >>= order(j, std::greater<int>());

// 3) Unsupported usage

j=3; // do not pre-initialize!

relation r2 = item(j,ai,ai+10) >>= order(j, std::greater<int>());

r(); // will throw

Also refer to:

order_mf, order_mem, group_by

order_mem TLR

template<typename T, typename T2, typename MemberT2>

OrderMem_tlr<T,MemberT2, std::less<MemberT2> >

order_mem(lref<T>& obj, MemberT2 T2::* mem)

template<typename T, typename T2, typename MemberT2, typename Pred>

OrderMem_tlr<T,MemberT2,Pred>

order_mem(lref<T>& obj, MemberT2 T2::* mem, Pred cmp)

Declarative reading: obj is ordered by data member (*obj).*mem.

Template Parameters:

T : Type of the objects to be sorted.

T2 : Same as T or a public base class of T.

MemberT2 : Type of the data member used for sorting. Must support comparison using

operator < unless a custom predicate is specified.

Pred: Type of predicate used to compare two objects of type MemberT2. Should accept

two arguments of type MemberT2 and return bool. Could be a function pointer or function

object.

Parameters:

obj : [in & out] Must be an lref. Input sequence is first read from this argument. Next the

ordered values are generated as output in this argument. obj should not already be

initialized when order_mem is evaluated first.

mem : Pointer to data member of T.

cmp : Comparator used to order the obj.

Exceptions:

InvalidArg: If obj is pre-initialized at the time of first evaluation.

Any exception thrown by the comparator used for type T.

Examples:

struct Name {

 string firstName;

 string lastName;

123

 Name(const char* first, const char* last) : firstName(first)

 , lastName(last)

 { }

 bool operator(const Name& rhs) {

 return firstName==rhs.firstName

 && lastName==rhs.lastName;

 }

};

// sort by last name

vector<Name> names = ;

lref<Name> n;

relation r = item(n,names.begin(),names.end())

 >>= order_mem(n, &Name::lastName);

while(r())

 cout << n->firstName << " " << n->lastName << "\n";

Also refer to:

order, order_mem, group_by

order_mf TLR

template<typename T, typename MemFunc>

OrderMf_tlr<...>

order_mf(lref<T>& obj, MemFunc f)

template<typename T, typename MemFunc, typename Pred>

OrderMf_tlr<...>

order_mf(lref<T>& obj, MemFunc f, Pred p)

Declarative reading: obj is ordered by result of obj->f().

Template Parameters:

T : Type of the objects to be sorted.

MemFunc : Pointer to a member function of T. Does not take any arguments.

Pred: Type of predicate used to compare objects whose type is same as the return type

of MemFunc. Pred should return bool. Could be a function pointer or function object.

Parameters:

obj : [in & out] Must be an lref. Input sequence is first read from this argument. Next the

ordered values are generated as output in this argument. obj should not already be

initialized when order_mf is evaluated first.

cmp : A comparator used to order the values.

Exceptions:

InvalidArg: If obj is pre-initialized at the time of first evaluation.

Any exception thrown by the comparator used for type T.

Notes:

124

This relation is useful for ordering types that provide accessor methods to read values of

data members.

Examples:

// sort by string length

vector<string> names ;

lref<string> n;

relation r = item(n,names.begin(),names.end())

 >>= order_mf(n, &string::length);

while(r())

 cout << *n << " ";

Also refer to:

order, order_mem, group_by

reverse TLR

template<typename T>

Reverse_tlr<..> reverse(lref<T>& obj)

Declarative reading: Produce obj‟s in reverse order.

Template Parameters:

T: Type of the objects to be reverse.

Parameters:

obj : [in & out] in: Values. out: Values in reverse order. obj should not already be pre-

initialized when reverse is evaluated first.

Exceptions:

InvalidArg: If obj is pre-initialized at the time of first evaluation.

Notes:

This relation is useful to reverse an input sequence.

Examples:

// reverse the range

lref<int> n;

relation r = range(n,1,5) >>= reverse(n);

while(r())

 cout << *n << " "; // prints 5 4 3 2 1

Also refer to:
ritem

125

8 Coroutine Support

This section covers Castor’s coroutine support which is useful for defining relations

imperatively. Coroutines are implemented as classes which derive (public or protected)

from class Coroutine. One of the member functions in this class can then be enabled to

provide coroutine style execution by using the co_begin, co_end, co_yield and

co_return macros. Usage of class Coroutine and the related macros is described below.

Coroutine class

Purpose: Optional helper base class for implementing relations as classes. Enables use of

macros co_begin, co_end, co_yield, co_return in derived classes.

Class Declaration:

class Coroutine {

protected:

 int co_entry_pt;

public:

 Coroutine() ;

};

Notes:

The task of implementing an arbitrary relation as a class can be simplified by using

coroutine style implementation. Since C++ does not support coroutines natively, Castor

provides four macros (co_begin, co_end, co_yield, co_return) that simulate the

coroutine style programming model.

To define a relation class as a coroutine, we derive from custom_relation and

implement the function call operator bool operator()(void) as follows:

// relation to check or generate values in a specified range
class Myrelation_r : public custom_relation {

 lref<int> p1, p2;

public:

 Myrelation_r(lref<int> p1, lref<int> p2) : p1(p1), p2(p2)

 { }

 bool operator() () {

 co_begin();

 ... // definition of coroutine goes here

 co_end();

 }

};

Note the use of macro co_begin to start and macro co_end to end the body of

operator(). No statements should precede or follow these two macros in the method

126

body. These two macros merely set up a switch statement spanning the definition of

operator(). Also avoid defining local variables inside operator(), since their state

will not persist across invocations of operator(). This is demonstrated in example 8

below, which is a more natural but incorrect way of implementing example 7.

Avoid defining variables locally within operator()as values of such variables will not

be retained across coroutine invocations. Consider promoting such variables to data

members in order to retain their values across invocations.

Examples:

// 1) Simplest coroutine that never succeeds

struct Simple1 : public custom_relation {

 bool operator()(void) {

 co_begin();

 co_end();

 }

};

Simple1 r;

cout << boolalpha << r() << "\n"; // prints false

cout << boolalpha << r() << "\n"; // prints false

cout << boolalpha << r() << "\n"; // prints false

// 2) Coroutine that succeeds once, using co_yield

struct Simple2 : public custom_relation {

 bool operator()(void) {

 co_begin();

 co_yield(true);

 co_end();

 }

};

Simple2 r;

cout << boolalpha << r() << "\n"; // prints true

cout << boolalpha << r() << "\n"; // prints false

// 3) Succeeds once, using co_return

struct Simple3 : public custom_relation {

 bool operator()(void) {

 co_begin();

 co_return(true);

 co_end();

 }

};

Simple3 r;

cout << boolalpha << r() << "\n"; // prints true

cout << boolalpha << r() << "\n"; // prints false

// 4) Succeeds twice, using co_yield

 bool operator()(void) {

127

 co_begin();

 co_yield(true);

 co_yield(true);

 co_end();

 }

// 5) Succeeds only once

 bool operator()(void) {

 co_begin();

 co_return(true);

 co_return(true); // will never be executed

 co_end();

 }

// 6) Succeeds only once

 bool operator()(void) {

 co_begin();

 co_yield(false);

 co_yield(true); // will never be executed

 co_end();

 }

// 7) Compiler Error !

 co_yield(true); co_yield(true); // can‟t use two macros on same line

// 8) Succeeds „n‟ times

class SimpleN : public custom_relation {

 int n, i;

public:

 SimpleN(int n) : n(n), i(0)

 {}

 bool operator()(void) {

 co_begin();

 while(i++ < n)

 co_yield(true);

 co_end();

 }

};

// 9) Incorrect way of implementing relation SimpleN from above

class SimpleN : public custom_relation {

 int n;

public:

 SimpleN(int n) : n(n)

 {}

 bool operator()(void) {

 co_begin();

 for(int i=0; i<n; ++i) // „i‟ should not be defined here

 co_yield(true);

128

 co_end();

 }

};

// 10) Relation to test/generate size of a specified string

class StrSize : public custom_relation {

 lref<string::size_type> sz;

 lref<string> str_;

public:

 // str_ is an input only parameter, sz is in/out

 StrSize(lref<string> str_, lref<string::size_type> sz)

 : sz(sz), str_(str_)

 { }

 bool operator() (void) {

 co_begin();

 if(sz.defined())

 co_return(*sz == str_->size());

 sz = str_->size();

 co_yield(true);

 sz.reset(); // revert external side effects

 co_end();

 }

};

cout << boolalpha << StrSize("blah",4)(); // prints true

lref<string::size_type> sz;

StrSize("blah",sz)();

cout << *sz; // prints 4

Also refer to:
predicate, co_begin, co_end, co_yield, co_return

co_begin macro

#define co_begin() ...

Brief Description: Used at the beginning of the method body of a coroutine. T This

macro can only be used in non-static member functions and requires the enclosing class

to derive (public/protected) from class Coroutine.

Also refer to:
Coroutine, co_end, co_yield, co_return

co_end macro

#define co_end() ...

129

Brief Description: Used at the end of the method body of a coroutine. The macro also

implicitly returns false to the caller. This macro can only be used in non-static member

functions and requires the enclosing class to derive (public/protected) from class

Coroutine.

Also refer to:
Coroutine, co_begin, co_yield, co_return

co_return macro

#define co_return(booleanExpr) ...

Brief Description: Used by coroutines to return a value to caller. This macro indicates

completion of the lifetime of the coroutine. All future attempts to execute the coroutine

instance will return false. This macro can only be used in non-static member functions

and requires the enclosing class to derive (public/protected) from class Coroutine.

Parameters:

booleanExpr: Any expression that evaluates to true or false. This value will be return

back to the caller of the coroutine.

Also refer to:
Coroutine, co_begin, co_end, co_yield

co_yield macro

#define co_yield(booleanExpr) ...

Brief Description: Used by coroutines to return a value to caller. When the argument to

co_yield evaluates to true, this macro indicates a temporary suspension of execution of

the coroutine and it returns true back to the caller. Next time the coroutine is invoked, it

resumes execution directly from the last co_yield, skipping all statements preceding the

co_yield. However if the argument to co_yield evaluates to false, it indicates the

completion of the lifetime of the coroutine similar to co_return. All future attempts to

execute the coroutine instance will return false. This macro can only be used in non-

static member functions and requires the enclosing class to derive (public/protected) from

class Coroutine.

Parameters:

booleanExpr: Any expression that evaluates to true or false. This value will be return

back to the caller of the coroutine.

Also refer to:
Coroutine, co_begin, co_end, co_return

130

9 Helper classes, functions and macros

effective_value function

template <typename T>

T& effective_value(T& obj) {

 return obj;

}

template <typename T>

T& effective_value(lref<T>& obj) {

 return *obj;

}

Brief Description: If t1 is a logic reference then its effective value is obtained by the

expression *t1. Effective value of any other object t2 is t2 itself.

Template Parameters:

T : Any type.

Parameters:

obj: The object whose effective value is desired.

Returns:

The effective value of obj.

Exceptions:

InvalidDeref : If obj is an uninitialized lref.

Example:
 lref<int> li=2;

 int i=3;

 cout << effective_value(li); // prints 2

 cout << effective_value(i); // prints 3

Also refer to:

effective_type.

effective_type class (meta function)

template<typename T>

struct effective_type {

 typedef T result_type;

};

131

template<typename T>

struct effective_type<lref<T> > {

 typedef typename lref<T>::result_type result_type;

};

Brief Description: Effective type of a logic reference lref<T1> is T1. Effective type of

any other type T2 is T2 itself.

Template Parameters:

T : Any type.

Parameters:

obj: The object whose effective value is desired.

Returns:

The effective value of obj.

Notes: Class effective_type provides a single member typedef result_type for

determining the effective type of any given type.

Example:
 effective_type<lref<string> >::result_type str; //str‟s type is string

 effective_type<string>::result_type str2; //str2‟s type is string

Also refer to:

effective_value.

getValueCont function

template<typename ContOfT, typename ContOfLrefT>

ContOfT getValueCont(const ContOfLrefT& cont)

Brief Description: Produces a sequence of POT values from a sequence of logic

references(or pointers or iterators). For example, it can be used to obtain a vector<int>

from a vector<lref<int> >. All logic references in cont must be initialized.

Template Parameters:

ContOfT : The type of container to be returned by the function. This type must always be

explicitly specified as the compiler cannot infer a type for this. Must satisfy requirements

of standard C++ containers [$23.1].

ContOfLrefT : A container of logic references (or pointers or iterators) from which

values are to be extracted by dereferencing each element. Must satisfy requirements of

standard C++ containers [$23.1].

Parameters:

cont : A sequence of logic initialized references.

Returns:

132

A sequence of values obtained by dereferencing each logic reference in cont.

Exceptions:

InvalidDeref : If any logic reference in cont is not initialized at the time of evaluation.

Notes: Time complexity is O(n), where n is the number of elements in seq.

Example:
 list<lref<int> > lri; // list of logic refs

 lri.push_back(1); lri.push_back(2); lri.push_back(3);

 vector<int> vi = getValues<vector<int> >(lri);

 copy(vi.begin(), vi.end()

 , ostream_iterator<int>(cout," ")); // prints 1 2 3

Also refer to:

predicate.

OneSolutionRelation class [deprecated. Use Coroutine]

Purpose: Useful as a base class when imperatively implementing relations that produce

at most one solution.

Class Definition:

template<typename Derived>

class OneSolutionRelation {

public:

 OneSolutionRelation();

 bool operator() (void);

};

Template Parameters:

Derived: Must implement methods bool apply() and void revert().

Notes:

Implementing a relation using imperative techniques often involves placing the

imperative code in a function object. To simplify some of the chore involved in the

implementation, OneSolutionRelation may be used as a public base class of the

function object. Note, this class is only useful in implementing relations that generate at

most one solution. The derived function object is required to implement two methods

apply and revert. OneSolutionRelation implements the bool operator() which

invokes these methods from the derived type. apply is invoked when the evaluation is

triggered on the relation for the first time. revert is called when the evaluation is

triggered for the second time. Thereafter neither apply nor revert will be invoked,

instead operator() immediately returns false to the caller. Like any other relation it

returns true if it succeeds or false otherwise. On failure, the lref arguments to the

relation should be left unmodified. On success, if any of the lref arguments were

133

modified, these changes are expected to reverted in the revert method. Note that revert

will only be called if apply succeeded previously.

Examples:

//---
//1) Succeeds once, fails thereafter

struct True : OneSolutionRelation<True> {

 bool apply() {

 return true; // succeed trivially

 }

 void revert() {

 // no side effects to revert

 }

};

relation r = True();

while(r()) // condition will only succeed once

 cout << "success";

//---
//2) relation to generate/test string sizes
class StringSize : public OneSolutionRelation<StringSize> {

 lref<string::size_type> sz;

 lref<string> str_;

 bool sz_changed;

public:

 // str_ is an input only parameter, sz is in/out

 StringSize(lref<string> str_, lref<string::size_type> sz)

 : sz(sz), str_(str_), sz_changed(false)

 { }

 bool apply (void) {

 if(sz.defined())

 return *sz == str_->size();

 sz = str_->size();

 sz_changed = true;

 return true;

 }

 void revert(void) {

 if(sz_changed) {

 sz.reset();

 sz_changed = false;

 }

 }

};

lref<string> str = "Hello";

lref<string::size_type> sz;

relation r = StringSize(str,sz) && write(sz);

r();

Also refer to:
custom_relation, predicate

134

135

10 Cuts

10.1 Introduction

The term cut refers to a facility used in LP for altering the default backtracking behavior.

Its primary purpose is to dynamically eliminate from consideration some candidate paths

of evaluation during backtracking. By default, backtracking pursues all possible paths of

evaluation even if the paths do not produce any useful results. Backtracking itself has no

knowledge about which paths are likely to produce results and which will not. However,

the programmer may have sufficient knowledge to determine that in certain cases,

pursuing alternate paths later will be simply wasteful. For instance consider the following

relation which prints the result after comparing its two arguments:

relation greaterLessEq(lref<int> n

 , lref<int> cmpVal) {

 return write(n) && write(" is ") &&

 (predicate(n<cmpVal) && write("lesser")

 || predicate(n>cmpVal) && write("greater")

 || predicate(n==cmpVal) && write("equal"));

}

It is clear by observation that if predicate(n<cmpVal) in the first clause succeeds, both

predicate(n>cmpVal) and predicate(n==cmpVal) in the subsequent clauses will fail.

Similarly if first clause fails and the second clause succeeds due to successful evaluation

of predicate(n==cmpVal), the third clause can be ignored by backtracking. Thus the

successful evaluation of predicate(n<cmpVal) and predicate(n>cmpVal) are two

important stages in the evaluation of this relations. At each of these points we can commit

to the current path of evaluation and discard all alternatives. In other words, we can “cut

out” the alternative paths. We can redefine the above relation using cuts by as follows:

relation greaterLessEq2(lref<int> n

 , lref<int> cmpVal) {

 return write(n) && write(" is ") &&

 cutepxr(predicate(n<cmpVal) && cut() && write("lesser")

 || predicate(n>cmpVal) && cut() && write("greater")

 || predicate(n==cmpVal) && write("equal"));

}

This definition includes two important changes. First, we have specified cut() at each

point where we are ready to commit to one path. These points are called cut points.

Second, we have enclosed the three clauses separated by disjunction operators in a

cutexpr(...). The cut() and the cutexpr() are used in conjunction to specify the

point at which to commit to a path and the extent of the path we are interested in

committing to. By using cut(), we specify the points at which to commit, and by using

cutexpr() we indicate the extent or the scope within which the cut points take effect.

In the above example, if predicate(n<cmpVal) succeeds, backtracking will encounter

cut() and consequently eliminate from consideration all alternatives available just after

136

the opening bracket of cutexpr and up until the cut(). All alternatives available before

the cutexpr and all alternatives after the cut() are left as is. So, for instance, if the first

clause is rewritten as:

 ... predicate(n<cmpVal) && cut() && (write("lesser") || write("smaller"))

Here we have two alternative write clauses immediately following the cut().This cut

point will not influence the choices that backtracking will make when evaluating the two

write clauses. Backtracking only commits to the path starting at cutexpr and ending at

the cut point.

A cut point without a surrounding cutexpr, or a cutexpr without any cut points are both

meaningless. By design, such mismatched occurrences will produce compilation errors.

The following usage of cuts, wherein a cutexpr appears in the caller and a cut()

appears in the callee, is also not allowed:

// Error: cannot dynamically nest cuts – nesting limited to lexical scope
relation outer(...) {

 return cutexpr(inner(..) || ...);

}

relation inner() {

 return ... && cut() ...

}

Since cuts interfere with readability, their usage should be limited to cases when they

have sufficiently significant effect on performance. The exclusive or operator defined

over relations could be considered in many situations where cuts are applicable.

Conceptually the ex-or operator is a special case of the cut facility, only more readable.

In the above greaterLessEq example, we may simply replace all || operators with ^ as

follows:

relation greaterLessEq(lref<int> n, lref<int> cmpVal) {

 return write(n) && write(" is ") &&

 ((predicate(n<cmpVal) && write("lesser"))

 ^ (predicate(n>cmpVal) && write("greater"))

 ^ (predicate(n==cmpVal) && write("equal")));

}

Also note the use of additional brackets around each clause separated by the ^ operator.

This is because operator ^ has a higher precedence than &&.

Support for cuts is provided in Castor via relation cutexpr, class cut and overloaded

operators &&, || and ^.

cutexpr relation

template<typename ExprWithCut>

CutExpr_r<ExprWithCut> cutexpr(const ExprWithCut& cut_expr)

137

Declarative reading: n/a.

Template Parameters:

ExprWithCut : A type that implements member function bool exec(bool&).

Parameters:

cut_expr : This is a relation expression that includes at least one cut().

Exceptions:

Any exception thrown by cut_expr.

Notes:

Relation cutexpr provides a scope within which a cut operates. Refer to the introductory

section above on Cuts.

Also refer to:
cut

cut class

Purpose: Introduces a cut point in a cut expression.

Class Definition:
class cut{};

Notes:

The class cut is a trivial type with no user defined members. An instance of cut is used

solely to mark a cut point. Refer to the introductory section above on Cuts.

