

Blending the Logic Paradigm into C++

Roshan Naik

roshan@mpprogramming.com

Last updated: Feb 25th, 2008

Revision History:

April 11th 2007: First version

May 8th 2007: In section 4.1, assignment of plain functions to type relation no longer allowed. Minor aesthetic updates.

Feb 25th 2008: Revised (with simpler) implementations for relational &&, || and eq() in sections 4.3, 4.4 and 4.5.

Abstract

The Logic paradigm (LP) provides a powerful program-

ming model that has been underrepresented in mainstream

programming as compared to the object-oriented, functional

and imperative paradigms. Lot of work can be cited in the

space of integrating logic into functional programming or

the functional into imperative paradigm but relatively less

has been written about integrating logic programming into

popular object-oriented languages used by the majority of

software developers. Consequently a vast unexplored terri-

tory exists in the space of multiparadigm programming

techniques that leverage logic programming in the dominant

universe of imperative and object–oriented programming.

This paper introduces a technique for seamlessly inte-

grating Logic programming techniques into C++. In this

approach, support for LP is provided in the form of a few

library primitives and does not require any extensions or

modifications to the C++ language. The proposed technique

is directly based on the imperative paradigm and can be

implemented in about 400 lines of C++ code. The code

presented here is based on the Castor library. More ad-

vanced facilities, built using the core parts described here,

are provided in Castor but not covered in this paper.

Categories and Subject Descriptors D.1.6 [Program-

ming Techniques]: Logic Programming; D.1.5 [Pro-

gramming Techniques]: Object-oriented Programming;

D.2.2 [Software Engineering]: Design Tools and Tech-

niques – software libraries; D.3.2 [Programming Lan-

guages]: Multiparadigm languages.

General Terms Design, Languages.

Keywords Multiparadigm Programming; Logic Program-

ming; Object-oriented; Programming Languages; C++;

Prolog

1. Introduction

Although most programming languages have one program-

ming paradigm at their core, they often tend to integrate

features from other paradigms. The degree to which they

integrate aspects of other paradigms varies from language

to language. For example functional and logic programming

languages typically tend to rely on imperative features for

performing I/O. Similarly imperative paradigm based lan-

guages like C++, Ruby, Python and more recently C#, have

integrated some functional features.

The Logic paradigm has seen relatively less exposure in

mainstream languages. Its highly declarative nature that

focuses more on problem specification rather than how to

solve a problem is a departure from most other paradigms.

Evidence of its usefulness in conjunction with other para-

digms has been well established in academic and non-

academic research efforts. For example the multiparadigm

techniques demonstrated in [1] provide an excellent

glimpse into the many new possibilities brought about by

integration of LP into an object-oriented and functional

framework.

An obvious approach to supporting LP in C++ is to

embed a Prolog style rule interpreter in the form of library.

Having to explicitly interact with such an LP interpreter via

API calls makes the final multiparadigm solution somewhat

unpleasant. Observing efforts that use this approach, such

as LC++ [7], reveals that LP code visibly stands out from

regular C++ code as the original flavor of C++ is lost.

Seamless integration of LP with other paradigms is impor-

tant for having a clean programming model which is essen-

tial to promote the use of multiparadigm techniques.

The technique described in this paper allows relations to

be defined as templates, classes, functions and even simply

expressions. This low level of integration reduces the syn-

tactic overhead and allows programmers to freely mix LP

with the other paradigms available in C++.

We begin in section 2 with a look at some examples to

get a feel for LP in C++ and also observe similarities with

Prolog. Section 3 discusses how relations are executed in

C++ and finally section 4 covers the essential implementa-

tion details involved in supporting LP model in C++. Basic

familiarity with Prolog or logic programming is expected.

2. Logic programming in C++

The following Prolog example lists facts about a particular

family from Greek mythology.

- 2 -

male(zeus). /* “zeus” is a male */
male(castor). /* “castor” is a male */

female(leda).
female(clytaemnestra).

/*zeus and leda are castor’s parents*/
parents(zeus, leda, castor).
parents(zeus, leda, clytaemnestra).

In C++, the equivalent code can be written using Castor

as follows.

relation malemalemalemale(lref<string> x) {
 return eq(x,"castor")
 || eq(x,"zeus");
}

relation ffffeeeemalemalemalemale(lref<string> x) {
 return eq(x, "leda")
 || eq(x, "clytaemnestra");
}

relation papapaparrrrentsentsentsents(lref<string> father
 , lref<string> mother
 , lref<string> child) {
 return eq(father,"zeus") && eq(mother,"leda")
 && eq(child,"castor")
 || eq(father,"zeus") && eq(mother,"leda")
 && eq(child,"clytaemnestra");
}

A few things are immediately noticeable in the C++

code. Each Prolog relation has a corresponding function

with the same name. Such C++ functions are also referred

to as relations. The return type of relations is relation and

the parameter types are specified in terms of template type

lref. Template type lref (abbreviation for logic refer-

ence) provides a facility for passing values in/out of func-

tions in the form of arguments, similar to references in C++.

Logic references, unlike C++ references, do not have to be

initialized. The template arguments to lref describe the

actual underlying type of the function’s parameter. In this

example, all relations operate on strings. Under the hood,

lref is essentially a reference counted smart pointer. The

return statement in each relation is an expression composed

of operators &&, || and calls to function eq. Function eq

provides support for unification. That is, its job is to try to

make both arguments equal. If its one of its argument is not

initialized, it will be assigned the value of the other argu-

ment. If both arguments are initialized the two are com-

pared using operator ==. At least one argument to eq must

be initialized. Unification fails only if comparison returns

false. This unification strategy is a variation to that sup-

ported in Prolog and will be discussed further in section

4.3.

Function eq does not actually perform the unification

immediately when invoked; instead it returns a function

object that will, when executed. Similarly the && and ||

operators return function objects which perform the con-

junction and disjunction operations when executed. Thus,

the return statements in the relations above merely return

function objects and perform no real evaluation. These

function objects encapsulate the semantics expected from

the expression in the respective return statements. The re-

turn type relation essentially serves as a mechanism for

holding such function objects.

The following Prolog rule describes the sibling relation-

ship:

/* X & Y are siblings if parents of X are same
as parents of Y, and X is not equal to Y */
siblingssiblingssiblingssiblings(X, Y):-
 parents(X,M,F), parents(Y,M,F), X=\=Y.

In C++ we write the same rule as:

relation siblingssiblingssiblingssiblings(lref<string> x
 , lref<string> y) {
 lref<string> f, m;
 return parents(f, m, x)
 && parents(f, m, y) && predicate(x!=y);
}

Here the call predicate(x!=y) is interesting to note.

Relation predicate is provided by Castor for easily con-

verting functions/function objects that return bool into rela-

tions. In the above code, the expression x!=y creates a

function object that tests x and y for inequality. This func-

tion object is then used as argument to predicate. Expres-

sions involving logic references and standard overloadable

operators (other than *, &, ->, [], () and =) are used to

create simple anonymous function objects directly inline.

These expressions are called Inline Logic reference Expres-

sions or ILE. ILEs provide a convenient way to create sim-

ple anonymous function objects declaratively. This is

somewhat similar to lambda functions facility available in

functional languages. Due to the use of logic references,

ILEs also automatically get an efficient support for closures

with both lvalue and rvalue semantics1. A closure is the set

of lrefs and values needed for evaluating the ILE. For the

duration of its lifetime, every ILE has access to its closure

even after the termination of the scope where the ILE and

its lrefs were created.

ILEs are also useful in creating simple anonymous rela-

tions directly inline. For this we pass an ILE that produces a

bool to relation predicate.2 Since ILEs are primarily a

convenience feature and not critical to implementing the

1
 Lrefs exhibit lvalue semantics and all other objects and values in the ILE

expression exhibit rvalue semantics. Thus updating the rlef inside an ILE

causes the original object to be modified.
2
 Early on, support for creating relations directly out of a boolean ILE

expressions without need for an “adapter” relation like predicate was

implemented, but this facility was later withdrawn as it ran into several

problems including some limitations imposed by C++. The current design

still leaves the door open to revisit this facility in the future (perhaps in

C++0x) with an eye towards preserving compatibility.

- 3 -

logic paradigm, a discussion of their implementation and

other interesting uses is beyond the scope of this paper.

Given the above relations, in Prolog we can ask the

question “Is Castor a sibling of Clytaemnestra?” as follows:

?- siblings(castor, clytaemnestra).

And in C++:

if(siblings("castor","clytaemnestra")()()()())
 cout << "yes";

The application of the function call operator on the func-

tion object return by siblings triggers the search for an

answer. In the above example we posed a question to check

whether a sibling relationship exists between Castor and

Clytaemnestra. Another type of question that can be asked

is “Who is a sibling of Castor?”. In Prolog this is phrased

as:

?- siblings(castor, X).

Here X is an uninitialized variable for which we are in-

terested in seeking a value. In C++ we can pose the same

question as follows:

lref<string> sib;
siblings("castor", sib)();
cout << *sib << " is castor's sibling";

Since logic reference sib is not explicitly initialized to

any string value, the backtracking and unification process

will initialize it with a value that satisfies the question.

Questions such as the above can have multiple satisfac-

tory solutions. Iterating over all solutions in C++ is quite

naturally supported using the imperative looping constructs

while and for. The following code prints all sibling pairs:

lref<string> sib1, sib2;
relation allSibings = siblings(sib1,sib2);
while(allSiblings()()()())
 cout << *sib1 << "," << *sib2<< "\n";

3. Execution of relations

In this section we take a brief look at how evaluation of

relations occurs when triggered by application of the func-

tional call operator. Consider the following relation de-

scribing spouse relationships written directly inline as an

expression.

lref<string> h, w;
relation spouse =
 eq(h,"husband1") && eq(w,"wife1")
 || eq(h,"husband2") && eq(w,"wife2");

Variable spouse now holds a function object

representing the expression tree shown in Figure 1.

In order to test if husband2 and wife2 are spouses we in-

itialize h to "husband2" and w to "wife2" and trigger the

evaluation of the relational expression by applying the func-

tion call operator on spouse:

h="husband2"; w="wife2";
if(spouse()()()())
 cout << "Yes";

The evaluation of spouse relation proceeds as follows:

� eq(h,"husband1") is evaluated with h initialized to
"husband2". Since both arguments are initialized, this
results in comparison of the two arguments. String
comparison of "husband2" with "husband1" fails,
which implies the failure of the entire && expression to
the left of the || operator. Short circuit evaluation al-
lows us to skip evaluation of eq(w,"wife2").

� Execution now proceeds to the right side of the || op-
erator. Evaluation of eq(h, "husband2") succeeds as
string comparison of "husband2" with "husband2"
succeeds.

� Success of the left half implies that the right half must
also be tried to determine the result of this && expres-
sion. Evaluation of eq(w,"wife2") succeeds as w,
which is initialized to "wife2", is compared with
"wife2". The && expression succeeds as both its
halves have succeeded.

� Since one half of the || expression has succeeded, the
evaluation of the entire || expression is considered a
success and true is returned as the result for applying
the function call operator to spouse.

Lets consider the question “Who is the spouse of hus-

band1?”. Our aim is to let backtracking and unification find

a suitable value for w when h is "husband1". For this we

assign "husband1" to h and clear any value stored in w

from the previous search.

h="husband1";
w.reset();
if(spouse()()()())
 cout << *w;

Evaluation proceeds as follows:

• eq(h,"husband1") succeeds as we have initialized h to
"husband1".

• Evaluation proceeds to the second half of the && expres-
sion which is eq(w,"wife1"). Since w is not initialized

||

&&

eq(h,husband1)

eq(w,wife1)

&&

eq(h,husband2)

eq(w,wife2)

Figure 1. Expression tree inside relation spouse

- 4 -

to any value, eq assigns its second argument "wife1" to
w and returns true.

• The evaluation of the && expression has thus succeeded
and consequently the || expression too. Thus, true is re-
turned to the if statement and the value stored inside w
is printed.

Now let us consider what happens when spouse() is in-

voked for the second time:

if(spouse()()()()) cout << “2nd spouse:” << *w;

The goal here is obviously to see if another spouse exists

for husband1. Relation spouse will resume evaluating its

expression tree from the point where execution halted last

time around. Before stepping through this execution we

need to discuss a few things.

The expression tree contained in spouse is simply an

aggregation of other smaller relations. Each node of the

expression tree is a relation. Operators ||, && and function

eq are all relations. Any relation in logic programming is

considered to be capable of producing zero or more solu-

tions. Only way to see how many solutions can be produced

is to actually go through the process of generating all solu-

tions. Each application of the function call operator on a

relation triggers the search for the next solution. After all

solutions have been discovered, false is returned to the

caller and all future attempts to seek solutions on that rela-

tion will also fail and return false. Every time a solution is

found, the uninitialized logic reference part of the relation

(in this case w) will be assigned a value representing the

solution. However, before proceeding to find the next solu-

tion, it is important that such side effects be reverted. Thus

it is the responsibility of each relation (at any level in the

expression tree) to revert any side effects that it has induced

so far, prior to moving on to another solution.

Let us return back to the discussion of what happens

when spouse() is invoked the second time.

• Execution resumes at eq(w,"wife1"). Essentially eq is

being given a chance by the && operator to either pro-

duce more solutions or report failure. eq takes this

chance to revert the unification of w with "wife1" and

then returns false to indicate there are no more solutions.

Logic reference w has now been reverted to its original

uninitialized state.

• Left half of the && expression had previously reported

success, which means there may still be more solutions

coming from it. Thus evaluation returns to back to

eq(h,"husband1"). Since eq has only performed the

comparison of h with "husband1" there is no other task

left for it to perform or any side effects to be revert. It

immediately returns false to the && expression.

• Failure of the left half of the && implies that there is no

need to purse the right half any more and false is re-

turned back to the || operator.

• The || operator detects failure of its left half and

proceeds to try out the right half. Evaluation reaches

eq(h,"husband2"). Since h is initialized to a value, eq

will perform comparison instead of assignment. Com-

parison of "husband1" with "husband2" results in

failure and the result cascades up to the || operator and

finally back to the if statement.

We can continue to safely invoke the function call opera-

tor on spouse. But henceforth, operator || will immediately

return false as it remembers the fact that both its halves

have been evaluated.

4. Implementing support for LP

Operator &&, operator ||, function eq, template type lref

and type relation are the five key elements that provide

the foundation for logic programming. Backtracking and

unification are the two primary pillars of the computational

model in LP. Backtracking support comes from overloads

for operators && and ||. Function eq() along with help

from template type lref provides support for unification.

Template lref also provides a channel for bidirectional

flow of information via functions parameters, similar to the

pass-by-reference mechanism in C++. Finally, type rela-

tion is instrumental in enabling a clean programming

model that requires minimal syntax when defining and con-

suming relations. The following sections cover these five

elements in more detail.

4.1 Type relation

The type relation internally represents a function object

with no arguments and return type bool. The simple ap-

proximate definition for type relation is in terms of

boost::function from the Boost library [9]:

typedef boost::function<bool(void)> relation;

Figure 2, below, shows an alternate but equivalent defi-

nition that does not rely on the Boost library.

class relation {
 struct impl {
 virtual ~impl(){}
 virtual impl* clone() const=0;
 virtual bool operator()(void)=0;
 };

 template<class F>
 struct wrapper : public impl {
 explicit wrapper(const F& f_): f(f_)
 { }
 virtual impl* clone() const {
 return new wrapper<F>(this->f);
 }
 virtual bool operator()(void) {
 return this->f();
 }
 private:
 F f;
 };

- 5 -

 std::auto_ptr<impl> pimpl;

public:
 typedef bool result_type;

 template<class F>
 relation(F f)
 : pimpl(new wrapper<F>(f))
 { }

 relation(relation const& rhs)
 : pimpl(rhs.pimpl->clone())
 { }

 relation& operator=(const relation& rhs) {
 this->pimpl.reset(
 rhs.pimpl->clone());
 return *this;
 }

 bool operator()(void) const {
 return (*this->pimpl)();
 }
};

Figure 2. Alternate definition for type relation.

One key difference between, relation and

boost::function<bool(void)> is that only function

objects, and not functions, can be assigned to relation.

“Type erasure” is the primary feature provided by rela-

tion. Type erasure allows objects of arbitrary types to be

assigned to a relation object as long as they support the

function call operator that returns a bool and takes no ar-

guments. Once the assignment to a relation has taken

place, the actual type of the object to the right hand side of

the assignment is not retained. In other words, the actual

type information is erased. The only type information left is

the fact that it supports the function call operator that re-

turns bool and takes no arguments3

To see the benefit of type erasure, consider the relation

male from section 2. The actual type of the return state-

ment is something like Or<relation, relation>. That

is a slightly long type name for such a simple return state-

ment. Breaking the type name down into smaller pieces will

reveal its correspondence to nature of the expression in the

return statement. The male relation could be alternatively

been specified using this type as the return type instead of

relation. However expecting the programmer to mentally

compute such type names accurately is not reasonable and

especially so when the return statements get more complex.

Declaring the return type simply as relation instead,

greatly reduces the burden on programmers and makes the

3
 Some experts feel the usage of the term “type erasure” to indicate these

exact semantics in C++ may be somewhat inaccurate. The related terms

“type erasure” and “type reconstruction” seem to have their origins in type

theory.

final code more readable. Similarly, consumers of relations

also benefit from ignoring the actual type name. Thus type

relation plays a critical role in simplification of the over-

all syntax. A downside of choosing to ignore the exact type

is a slight performance penalty incurred when redirecting

the function call from type relation to the actual underly-

ing type. For discussion on performance of type erased

function calls refer to [9].

Type erasure also manages to contain the problem of

“explosion of types” which can sometimes get severe. If

types were preserved for each sub expression then the func-

tion object at every level of the expression tree has a unique

type. And pervasive use of such “type preserved” relational

expressions only leads to more and more types which will

eventually break the compiler or linker. The downside

however is a loss of performance since type erased function

objects are poor candidates for inlining.

Type erasure is a pure library technique in C++ that re-

lies on templates. More discussion on type erasure and its

implementation aspects in C++ can be found in [13]. The

following example demonstrates the essential semantics of

relation:

bool alwaysTrue() {return true;}

struct neverTrue {
 bool operator() (void) {return false;}
};

relation t = &alwaysTrue; //Compiler Error!
relation f = neverTrue();

f(); // invokes neverTrue::operator()

relation nt = f; // make a copy
nt(); // now invokes neverTrue::operator()

relation r; //ERROR! r must be initialized

In short, relation supports application of operator()

with no arguments and, construction and assignment from

predicate function objects.

An obvious alternative to type erasure is to use inherit-

ance and polymorphism. Type relation could be defined

as base class that declares the function call operator as a

pure virtual function:

struct relation2 {
 virtual bool operator()(void)=0;
};

Although this alternative is workable, it is fraught with

problems. First, it requires all user defined relations to be

defined as classes that inherit from this type. For example

the male relation we covered earlier would look as follows:

struct Male : relation2 {
 ..type.. x_;
 Male(..type.. x) : x_(x)
 { }
 bool operator()(void) {
 return unify(x_,"castor")

- 6 -

 || unify(x_,"zeus");
 }
};

Such syntactic requirements get cumbersome rather

quickly. Furthermore, this leads to the need for using poin-

ters (or references) and memory management hassles. Con-

sider the usage of such relations:

//pointers needed to invoke polymorphic opera-
tor()
relation2* bothMales = new Male(x) && new
Male(y);

The lifetime and ownership of the objects allocated us-

ing new is no longer clear as relation objects typically

tend to be used outside the lexical scope in which they were

instantiated. Additionally, the burden of explicit dealloca-

tion is placed on users. A quick fix for this problem is to

use smart pointers. However it only makes the syntax poor-

er and the end result looses simplicity of expression.

Another possible technique, not discussed here, is the

use of “duck typing” as discussed in [8]. However it leads

to the problem of long type names similar to that discussed

above. Use of boost::variant and boost::any was also

considered for representing type relation, but did not

prove to be fruitful.

4.2 Template lref: The Logic reference

The template type lref is an abbreviation for logic refer-

ence and provides a facility for passing values in/out of

functions in the form of arguments, similar to references in

C++. Unlike C++ references, logic references do not have

to be initialized. Member function defined() can be used

to check for initialization as demonstrated in the following

code:

lref<int> li1=1; // li1.defined()==true
lref<int> li2 ; // li2.defined()==false
li2 = 2; // now li2.defined()==true
li2.reset(); // now li2.defined()==false

Operator * and operator -> can be applied to access the

value referenced by a logic reference. Semantics of initiali-

zation and assignment for logic references are important to

understand since these semantics allow lrefs to be used as

in/out parameters:

• When an lref<T> is constructed or assigned with an

object of type T (or a type convertible to T) or lref<T>,

it internally stores a copy of the value. Thus an object of

type T can be supplied anywhere an lref<T> is re-

quired.

• When an lref is copy constructed with another

lref<T>, both logic references will be joined together.

• lref<T> cannot be joined with lref<T2> if T2 is not

the same type as T.

Joined references are also referred to as co-references.

Logic references that are joined together will refer to the

same underlying value. Any change in the underlying value

of one logic reference is observable by all logic references

that are joined with it. Such a join cannot be broken. That

is, if logic references A and B are joined together and C and

D are joined together, then C’s join with D cannot be bro-

ken to in order to form a join with A and B. C will continue

to be a part of the join for the duration of its lifetime. Logic

references can only be joined together by copy construction

only (and not by assignment). The join is automatically

destroyed when the logic reference is destroyed. When the

last joined reference is destroyed, it will deallocate the un-

derlying value. Logic references are also safe to use with

polymorphic types. An object of derived type may be as-

signed to an lref of a base type. Figure 3 demonstrates the

semantics of lref in more detail.

// Assignment of polymorphic types
Derived d;
lref<Base> lb = d;

// Assignment of convertible types
lref<string> ls="castor";

// Assignment same or diff lref types
lref<int> li1=1, li2=2;
li2=li1; // copies integer
lref<double> ld;
ld=li; // copy as double

// Copy construction
lref<int> li3=li1; //join with li1

lref<double> ld = li3; /* ERROR! Can’t join
lrefs of different type even if referenced
types are convertible */

// Accessing underlying value
int i = *li1;
cout << ls->length();

// Updating joined logic references
lref<int> li4 = li1; // joined
li4 = 25;
cout << *li1; // prints 25

Figure 3. Semantics of logic references

Understanding the basic semantics described above is

generally sufficient to produce an equivalent implementa-

tion. Since an implementation of lref is relatively

straightforward to produce using the semantics described

above, the implementation details are left out from this pa-

per.

4.3 Relation eq: The unification function

As discussed previously, function eq provides support for

unification. Relation eq attempts to unify its first argument

with the second. Both parameters types are lref<T>. The

unification algorithm implemented by eq is as follows.

- 7 -

• If both arguments are initialized, then they are compared
for equality. Outcome of the comparison is returned as
result.

• If only one of the arguments is initialized, its value is
assigned to the other uninitialized argument and returns
true.

• If both arguments are not initialized, an exception is
thrown.

In short, unification is a “generate or compare” opera-

tion. If both arguments are initialized we compare them,

otherwise we generate a value for the uninitialized one by

assignment. Note that it is possible to implement other vari-

ations to unification, but is generally not required. This

strategy is a slight deviation from that used in Prolog which

allows uninitialized terms to be unified. Castor’s approach

guarantees that a logic reference will be definitely initia-

lized when unification succeeds on it. This guarantee then

cascades up to user defined relations. Consequently it is

much easier (but not foolproof) to guarantee that logic ref-

erences can be accessed safely without first testing them for

initialization when backtracking and unification have re-

ported success as follows:

lref<string> sib;
if(siblings("castor", sib)()()()()) {
 if(sib.defined()) // this check NOT needed
 cout << *sib << " is castor's sibling";
}

The following pseudocode demonstrates these opera-

tional semantics using coroutine style implementation (by

borrowing the yield keyword from C#). Here lhs and rhs

refer to the two lref arguments to eq.

if (lhs.defined() && rhs.defined()) {
 yield yield yield yield return *lhs == *rhs; // compare
}
else if(lhs.defined()) {
 rhs = lhs; // generate in rhs
 yield yield yield yield return true;
 rhs.reset();
}
else {
 lhs = rhs; // generate in lhs
 yield yield yield yield return true;
 lhs.reset();
}
return false;

Figure 3a. Coroutine pseudocode for Unification

Due to lack of direct support for coroutines in C++, we

need to simulate coroutines using function objects. The

equivalent C++ code for the pseudocode in is give below:

template<typename T>
class Unify {
 lref<T> lhs, rhs;
 int state;
public:
 Unify(lref<T> lhs, lref<T> rhs)

 : lhs(lhs), rhs(rhs), state(0)
 { }

 bool operator()(void) {
 switch(state) {
 case 0:
 if (lhs.defined() && rhs.defined()) {
 state=4;
 return *lhs == *rhs;
 }
 else if(lhs.defined()) {
 rhs = lhs;
 state = 1;
 return true;
 case 1:
 state = 3;
 rhs.reset();
 }
 else {
 lhs = rhs;
 state = 2;
 return true;
 case 2:
 lhs.reset();
 }
 state = 3;
 default: // case 3:
 return false;
 } // switch
 } // operator()
};

template<typename T>
relation eqeqeqeq(lref<T> l, lref<T> r) {
 return Unify<T>(l,r);
}

Figure 3b. Code for Unification equivalent to Fig 3a

Function eq itself has a trivial one liner body that returns

a function object of type Unify<T>. It is the job of this

function object to perform unification sometime in the fu-

ture i.e. when its operator() is invoked. The two argu-

ments to eq are stored in Unify as data members lhs and

rhs.

On first application of Unify::operator(), if both ar-

guments have defined values, the two arguments are com-

pared and the outcome of the comparison is returned. All

future applications of Unify::operator() will return

false. Unification merely returns false. On the other

hand if one of the two arguments does not have a defined

value, the value of the other argument is assigned to it and

true is returned. On next application of Uni-

fy::operator(), the argument to which the value was

assigned is reset back to its uninitialized state by invoking

reset() on the lref and false is returned. All future ap-

plications of Unify::operator() return false right

away.

Method lref::reset() is a trivial operation that mere-

ly clears an internal flag. There is no memory deallocation

or destructor invocation is involved. Thus reverting state

during backtracking is very efficient.

- 8 -

 In section 4.1 above we discussed how relations are re-

sponsible for reverting any previously induced side effects

before proceeding to find more solutions. Similarly, if as-

signment has been performed to l, the next time Uni-

fy::operator() is invoked, it needs to revert this

assignment. Members lchanged and rchanged are used

for tracking whether l or r was assigned a value. Assign-

ment is undone by invoking reset() on the logic refer-

ence.

The function objects returned by the various calls to eq

within, for instance, the gender relation are stitched to-

gether into bigger and bigger compound function objects

using the || and && operators. The gender relation finally

returns one function object that encapsulates the entire ex-

pression. This is basically a declarative mechanism to

create function objects on demand specifically for the rela-

tional expression at hand. Since the return type of user de-

fined relations is typically relation, these functions

objects are stored in a relation object and will be subject

to evaluation in the future only when needed. Often when

evaluating such compound expressions, some of its sub

expressions may not require evaluation, and indeed those

will not be evaluated. Short-circuit evaluation of operators

|| and && is a simple example. This technique is an exam-

ple of lazy evaluation.

An alternative design for relation eq is to overload the

operator== instead. Thus relation male from section 2

could then be rewritten as follows :

relation malemalemalemale(lref<string> x) {
 return (x=="castor") || (x=="zeus");

}

However this design was rejected for a few reasons. The

first reason is a philosophical one deriving from the obser-

vation that equality is not the same as unification. Unifica-

tion is actually a combination of equality and assignment. A

more technical reasoning comes from the observation that

using a named function like eq frees up operator== for

other uses. In Castor this freedom is effectively used to

create ILEs. Another technical reason is that using a named

function allows us to introduce other overloads for eq that

may accept more than two arguments. Also, using named

function eq requires typing only one additional character,

but is much safer since accidental omission of any brackets

around the equality operators can lead to completely unex-

pected semantics in the above code.

The following sections discuss the overloads for opera-

tors || and && which provide the backbone for the back-

tracking mechanism.

4.4 Operator || : Disjunction

Similar to function eq, operators && and || are also rela-

tions implemented as coroutines. They are essentially high-

er-order relations that take two relations as arguments.

Responsibility for supporting backtracking primarily lies

with operator ||. Backtracking is simply about trying alter-

natives. The function object returned by operator || will

evaluate the first (i.e. the left) argument to ||. If this suc-

ceeds, true is returned. On the other hand, if evaluation

fails, the alternative (i.e. the second argument) is evaluated.

As any relation can possibly generate multiple solutions,

operator || will switch over to evaluating the second rela-

tion only once all solutions from the first have been ex-

hausted. Similarly the right argument will be given a chance

to produce all solutions. Left and right relations will return

true as long they have solutions. Once rhs has returned

false operator || will return false back to the caller.

Semantics for operator || can be summarized as: gener-

ate all solutions from the left side, then generate all solu-

tions from the right side. The following pseudocode

demonstrates these operational semantics using coroutine

style implementation (by borrowing the yield keyword

from C#). Here lhs and rhs refer to the two argument rela-

tions to operator ||:

while(lhs())
 yieldyieldyieldyield return true; //‘yield’ taken from C#
while(rhs())
 yieldyieldyieldyield return true;
return false;

Figure 4a. Coroutine pseudocode for Operator | |

The equivalent C++ code that simulates the coroutine is

as follows:

class Or {
 int state;
 relation lhs, rhs;

public:
 Or(relation lhs, relation rhs)
 : lhs(lhs), rhs(rhs), state(0)
 { }

 bool operator()(void) {
 switch(state) {
 case 0:
 if(lhs())
 return true;
 case 1:
 state=1;
 if(rhs())
 return true;
 default:
 state=2;
 return false;
 } // switch
 }
};

- 9 -

Or operator ||operator ||operator ||operator || (relation lhs, relation rhs) {
 return Or(lhs, rhs);

}

Figure 4b. Code for Operator | | equivalent to Fig 4a

The arguments relations to operator || are stored in Or

as data members lhs and rhs. Data member state is used

for keeping track where the execution needs to be resumed

on the next evaluation attempt.

4.5 Operator && : Conjunction

In order to understand the semantics of operator && consid-

er the following code:

lref<int> a, b;
relation r = (eq(a,1) || eq(a,2))
 && (eq(b,3) || eq(b,4));
while(r())
 cout << "(" << *a << "," << *b << ")";

This prints (1,3)(1,4)(2,3)(2,4) when executed. This ex-

ample demonstrates the sequence of evaluations occurring

on the sub expressions comprising the && relation.

Semantics for && can be summarized as: all solutions

from the right side of the && are produced for each solution

from the left side. The following pseudocode demonstrates

these operational semantics using coroutine style implemen-

tation (by borrowing the yield keyword from C#). Here

lhs and rhs refer to the two argument relations to operator

&&:

relation tmp = rhs; //make copy of rhs
while(lhs()) {
 while(rhs())
 yieldyieldyieldyield return true; //‘yield’ taken from C#
 rhs = tmp; // reset rhs
}
return false;

Figure 5a. Coroutine pseudocode for Operator &&

The equivalent C++ code that simulates the coroutine is

as follows:

class And {
 int state;
 relation lhs;
 relation rhs, tmp;
public:
 And(relation lhs, relation rhs)
 : lhs(lhs), rhs(rhs), tmp(rhs), state(0)
 { }

 bool operator()(void) {
 switch (state) {
 case 0:
 while(lhs()) {
 case 1:
 state=1;
 while(rhs())

 return true;
 rhs = tmp;
 state=0;
 }// while
 default:
 state=2;
 return false;
 } // switch
 }
};

And operator &&operator &&operator &&operator && (relation lhs, relation rhs) {
 return And(lhs, rhs);
}

Figure 5b. Code for Operator && equivalent to Fig 5a

4.6 Other features

Other facilities such as support for unification of se-

quences, standard iterators, recursive relations, ILEs, exclu-

sive-or operator, dynamic relations etc. are provided in

Castor. Comprehensive support for cuts is also provided for

finer grain control over the backtracking mechanism. It is

worthwhile noting that this approach to LP, makes it is

possible implement any relation using tradition imperative

style code instead of the more natural relational style. Rela-

tion eq, and operators || and && are all examples of im-

plementing relations imperatively. Sometimes this is

essential to implement relations that bridge the object-

oriented or other paradigms with relations. In other cases

such techniques may be used to manually optimize relations

that are performance critical. The downside of implement-

ing relations in such a fashion is that they are tedious and

error prone, and on the plus side they are easier to step

through using a debugger. For further discussion on these

topics refer to [1]

5. Related work

Prior efforts in the area of integrating logic and imperative

paradigms have relied on many different techniques. Gen-

erally these approaches can be classified into those that

require compiler support and those that are implemented as

pure libraries. Modifying an existing language to make rela-

tions first class native concepts can be beneficial but is not

always practical if the language has a well established user

base. Providing language level support is sometimes done

by embedding a Prolog style rule processing engine directly

in the language as in Oz [5]. Leda [3] uses a different and

very innovative approach by implementing support for LP

partly in language and partly in library without incorporat-

ing an LP interpreter. Relatively minimal language support

is provided for LP and rest of the support comes from just a

few lines of library code. Leda’s technique is sometimes

referred to as the “continuation passing” approach and

based on [12]. This strategy relies heavily on functional

features such as lambda functions and closures. Application

- 10 -

of a similar approach for supporting logic programming in

Java (using a combination of language extensions and li-

brary) is discussed in [2] and [4].

LC++ [7] implements a Prolog style interpreter in library

form to support LP in C++. Defining relations and finding

solutions are then performed via APIs provided by LC++.

The programming model leads to rather distinct boundary

around the Logic paradigm since other paradigms have to

interact with relational code via APIs. The syntax for LP

also visibly stands out from regular C++ code. MPC++ [6]

uses the continuation passing approach to provide LP sup-

port in pure library. MPC++’s approach blends user defined

relations better with regular C++ code but suffers from syn-

tactic overhead as it requires relations to be defined as

classes. Also certain functional programming aspects sur-

face in user code when attempting to iterate over solutions

generated by relations.

6. Conclusion

This paper introduced a technique for integrating the logic

programming paradigm into C++ without requiring lan-

guage extensions. The approach is easy to implement, based

on the imperative/object-oriented techniques and enables

building comprehensive support for LP facilities in C++.

Relations can be defined as templates, classes, functions,

member functions or just expressions. This low level of

integration allows LP to fit seamlessly into C++. In any

multiparadigm framework it is essential to be able to freely

mix different styles cleanly and with minimal syntactic

overhead. This technique has been implemented successful-

ly as part of the Castor library. Good performance is also

essential for any programming technique to succeed in the

large scale. In this paper we have made no mention about

performance as work on measuring it is pending.

Although many interesting features that help logic pro-

gramming and multiparadigm programming have been de-

veloped, the surface has been barely scratched. A plethora

of multiparadigm programming techniques remain to be

discovered. Ability to effectively use of a combination of

programming styles that best serve the tasks is very useful.

Terms such as “pure object-oriented” or “pure functional”

are not necessarily very desirable features.

Acknowledgments

Timothy Budd’s work on his multiparadigm language Leda

served as inspiration for developing this technique. I am

indebted to Tim Budd and Margaret Burnett at Oregon

State University for introducing me to multiparadigm pro-

gramming.

Thanks to Eric Niebler for explaining certain implemen-

tation details of his innovative regular expression library,

Xpressive. This greatly helped crystallize the design of type

relation which had previously proved troublesome.

Finally, without some of the innovative techniques de-

veloped and documented by numerous people in C++

community surrounding templates and metaprogramming

this effort may not have been possible.

References

[1] Naik, Roshan., Introduction to Logic Programming with

C++, 2006. Available at

http://www.mpprogramming.com/resources/CastorTutorial.p

df.

[2] Naik, Roshan., Multiparadigm Programming with Java/MP.

Masters Thesis, Oregon State University, 2001. Available at

http://eecs.oregonstate.edu/library/?call=2003-2

[3] Budd, Timothy A., Multiparadigm programming in Leda.

Addison-Wesley, 1995.

[4] Budd, T.A., The Return of Jensen's Device. In Multipara-

digm Programming with Object-Oriented Languages, pub-

lished by John von Neumann Institute for Computing, Jülich,

Germany, 2002

[5] Van Roy, Peter, Logic Programming in Oz with Mozart. In

Proceedings of the 1999 international conference on Logic

programming (Las Cruces, New Mexico, United States).

[6] Edwards, Stephen H., CS 5314 MPC++ Resources. Availa-

ble at http://courses.cs.vt.edu/~cs5314/Spring02/mpcpp.php

[7] McNamara, B., and Smaragdakis, Yannis. Logic Program-

ming in C++. Available at http://www-

static.cc.gatech.edu/~yannis/lc++/.

[8] Koenig, Andrew. Templates and Duck Typing. C/C++ Users

Journal, June 2005.

[9] Gregor, Douglas. Reference document for Boost.Function.

Available at http://www.boost.org/doc/html/function.html

[10] Friedman, Daniel P., William E. Byrd and Kiselyov, Oleg.

The Reasoned Schemer. The MIT Press, 2005.

[11] Spivey, J.M. and Seres, S.. Embedding Prolog in Haskell. In

proceedings of Haskell’99, Paris, France, 1999.

[12] Mellish and Hardy. Integrating Prolog in the POPLOG En-

vironment. In Implementations of Prolog, J.A Campbell (ed.)

Ellis Horwood, New York, 1984.

[13] Abrahams, D., and Gurtovoy, A.. C++ Template Metapro-

gramming. Addison Wesley, 2004

